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Abstract

A choice rule with affirmative action decides on the recipients of a limited number

of identical objects by reconciling two objectives: respecting a priority ordering over

the applicants and supporting a minority group. We extend the standard formulation

of a choice problem by incorporating a type function and a priority ordering, and

introduce monotonicity axioms on how a choice rule should respond to variations

in these parameters. We show that monotonic and substitutable affirmative action

rules are the ones that admit a bounded reserve representation. As a prominent class

of choice rules that satisfy the monotonicity axioms, we characterize lexicographic

affirmative action rules that are prevalent both in the literature and in practice.

Our axiomatic approach provides a novel way to think about reserve systems and

uncovers choice rules that go beyond lexicographic affirmative action rules.
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1 Introduction

When allocating scarce resources, it is common that decision makers aim to support a

particular minority group. The minority group can be, for example, low socioeconomic

status applicants or applicants from the school’s neighborhood when allocating school seats,

applicants with disabilities when allocating job positions, or highly educated applicants

when allocating visas. It is also common that the objective to support the minority group

has to be reconciled with an objective to respect a given priority ordering over applicants,

such as an exam-score order in school choice, a merit order in job assignment, or time-of-

application order in visa assignment. How can these two potentially conflicting objectives

be reconciled?

We model this problem as the choice problem of a decision maker who has a limited

number of seats (the capacity) and encounters a set of applicants together with a type

profile indicating who is a minority and a priority ordering over the applicants. A choice

rule, for each choice problem, chooses a subset of the applicants without exceeding the

capacity, with the interpretation that each chosen applicant is allocated a seat.

We focus on choice rules that satisfy substitutability : a chosen applicant remains chosen in

a smaller set of applicants.1 We introduce axioms that are based on two simple comparative

statics: How should a choice rule respond to (1) improving the priority order of a chosen

minority applicant or (2) changing the type of a chosen minority applicant? Our central

axioms, namely monotonicity axioms, require that if the priority order of a chosen minority

applicant is improved or the type of a chosen minority applicant is changed (into a majority),

then no other minority applicant should be adversely affected,2 since such changes mean

that the set of intended beneficiaries for affirmative action possibly gets smaller.

Our contribution consists of two characterizations. First, in Theorem 1, we show that

the class of monotonic and substitutable choice rules for affirmative action is the class of

choice rules that admit a bounded reserve representation: at each problem, in addition

1Substitutability of institutions’ choice rules is typically indispensable when designing centralized
clearinghouses to allocate seats from multiple institutions, since substitutability ensures stability of the
outcome (Hatfield and Milgrom, 2005; Hatfield and Kojima, 2008).

2That is, all other minority applicants who were chosen before the change should still be chosen after
the change.
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to all top-tier3 minority applicants, a certain number of bottom-tier4 minority applicants,

called a reserve number, are chosen. It is such that the reserve number of each problem

only depends on the type configuration of the top-tier, and the reserve number changes by

at most one in response to a priority improvement or a type change. This result provides a

fairly general way to think about reserve systems that are common in practice.

Second, in Theorem 2, we characterize a prominent class of monotonic and substitutable

choice rules for affirmative action called lexicographic affirmative action rules that are

prevalent both in the recent resource allocation literature and in practice.5 These choice

rules allocate seats sequentially by following a fixed list of priority orderings that rank

applicants either according to a given priority ordering or according to the affirmative

priority ordering in which the minority applicants are prioritized. The highest priority

applicant according to the first priority ordering is chosen. Then, among the remaining

applicants, the highest priority applicant according to the second priority ordering is chosen,

and so on. The additional axiom in the characterization is consistency in effective type

changes: if changing the type of a minority applicant is effective, i.e., if it results in new

chosen minority applicants, then changing the type of any minority applicant with a lower

priority must also be effective (unless all minority applicants are already chosen).6

By providing a novel and flexible way to think about reserve systems, our results also

pave the way for discovering new affirmative action rules. To highlight this, we introduce a

class of monotonic and substitutable choice rules called stepwise-adjusted–reserves rules

that are not lexicographic but might be more reasonable to use in applications in which

some additional flexibility is desirable. For example, a policy maker can reserve different

numbers of seats for affirmative action depending on whether there are few, many, or

enough top-tier minority students, while defining these categories in a rather flexible way.

This is not possible with a lexicographic affirmative action rule as we discuss in Section

5.1, which indicates that choice with affirmative action goes beyond lexicographic choice.

3Applicants who are top-q ranked according to the priority ordering, where q denotes the capacity.
4Applicants who are not top-q ranked.
5In some applications, a certain group of agents is supported for reasons that do not necessarily include

“affirmative action” as it is commonly understood. Nevertheless, our results are applicable as long as
respecting a priority ordering is reconciled with supporting a certain group.

6We show the independence of the axioms in Appendix B.
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1.1 Related Literature

When designing mechanisms to allocate resources from multiple institutions, the design

of institutional choice rules may potentially have more importance than designing the

rest of the mechanism.7 However, how to design these institutional choice rules has been

relatively under-examined in the literature. A recent exception is Echenique and Yenmez

(2015), who provide axiomatic characterizations of different choice rules for schools that

face applicants of multiple possible types and aim to achieve diversity.8 Although our basic

axioms such as capacity-filling and substitutability overlap, we differ by incorporating the

type profile and the priority ordering as parameters of a choice problem and introduce

axioms novel to this context that aim to formulate how to implement affirmative action

policies. In particular, we introduce the monotonicity axioms on how the choice rule should

respond to type or priority changes. Monotonicity axioms are in the same spirit with the

population monotonicity axiom, which was introduced by Thomson (1983) in the context

of bargaining theory and became one of the standard axioms in the resource allocation

literature (Moulin, 1990; Thomson, 1995; Ehlers et al., 2002).

Affirmative action has been an important topic especially in the matching context starting

with the seminal paper Abdulkadiroğlu and Sönmez (2003), which includes a section on

controlled school choice. Among others, lexicographic choice comes up in school choice

rules in several school districts in the US such as in Boston (Dur et al., 2018) and in

Chicago (Dur et al., 2020), choice rules for government job positions and seats at publicly

funded educational institutions in India (Aygün and Turhan, 2020; Aygün and Turhan,

2017; Sönmez and Yenmez, 2020), H-1B visa allocation for U.S. immigration (Pathak et al.,

2020), and choice rules for allocating ventilators during a pandemic (Pathak et al., 2020).9

A version of lexicographic choice rules has been implemented also in Israeli “Mechinot”

gap-year program (Gonczarowski et al., 2019). Although these applications include different

institutional constraints and therefore result in different details in how the corresponding

choice rules operate, the lexicographic feature remains common.

7In a recent study, Leshno and Lo (2021) argue that the choice of priorities can have larger welfare
implications than the choice of mechanism.

8Imamura (2020) formalizes the trade-off between meritocracy and diversity in the setting of Echenique
and Yenmez (2015).

9Pathak et al. (2020) use the “sequential reserve matching” terminology.
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Decision making based on a lexicographic order has been widely studied in the literature.10

In the context of allocating multiple identical objects under a capacity constraint, to our

knowledge, Kominers and Sönmez (2016) is the first study that includes lexicographic choice

rules.11 Chambers and Yenmez (2017, 2018) are other related recent papers.12 Chambers

and Yenmez (2018) particularly note that lexicographic choice rules satisfy capacity-filling

and substitutability, but do not provide an axiomatic characterization. Doğan et al. (2021)

also consider choice rules based on lexicographic choice procedures, but the class of choice

rules characterized is different than the class we study here since they include variable

capacity constraints and do not include a minority group or axioms for affirmative action.

2 The Model and Notation

In what follows, we refer to the decision maker as a school that wants to allocate a limited

number of seats, and refer to the applicants as the students.

Let S be a nonempty finite set of students. A (choice) problem is a triple (S, τ,�) such

that

i. S ⊆ S is a set of students,

ii. τ : S → {0, 1} is a type function where 1 denotes the minority type and 0 denotes

the majority type (i.e., s ∈ S is a minority student if τ(s) = 1 and a majority student

if τ(s) = 0).

iii. � is a (strict) priority ordering, which is a complete, transitive, and anti-symmetric

binary relation on S.

Let Sm(τ) denote the set of minority students and SM(τ) denote the set of majority

students in S with respect to τ . When the type function in question is clear, we simply

write Sm and SM .

Given S ⊆ S, let T (S) denote the set of all type functions and let Π(S) denote the set of

10See, among others, Chipman (1960), Fishburn (1974), Blume et al. (1989), Rubinstein (1998), Manzini
and Mariotti (2012) and Houy and Tadenuma (2009). Blume et al. (1989) note that the idea of a lexicographic
utility function was mentioned in Von Neumann and Morgenstern (1947).

11Kominers and Sönmez (2016) use the “slot-specific priority” terminology, in the general matching with
contracts framework.

12To our knowledge, an earlier working paper version of Chambers and Yenmez (2017) is the first paper
to use the lexicographic choice terminology in this context.
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all possible priority orderings over S. Note that (S, τ,�) is a problem if and only if S ⊆ S,

τ ∈ T (S), and �∈ Π(S).

Given S ⊆ S and a type function τ ∈ T (S), for each S ′ ⊂ S, let τ |S′ be the restriction

of τ to S ′, i.e., τ |S′ ∈ T (S ′) and for each s ∈ S ′, τ |S′(s) = τ(s). Similarly, given S ⊆ S
and a priority ordering �∈ Π(S), let � |S′ be the restriction of � to S ′.

Given S ⊆ S, �∈ Π(S), and k ∈ {1, . . . , |S|}, let rk(�) denote the k-th ranked student

in �, i.e., s = rk(�) if and only if |{s′ ∈ S \ {s} : s′ � s}| = k − 1. Also, let rank(s,�)

denote the rank of s at �, i.e., rank(s,�) = k if and only if s = rk(�).

A choice rule C for the school maps each problem (S, τ,�) to a nonempty subset

C(S, τ,�) ⊆ S. Let q ≥ 3 denote the capacity of the school. It is assumed that for each

problem (S, τ,�), |C(S, τ,�)| ≤ q. We use Cm(S, τ,�) and CM(S, τ,�) to denote the

chosen minority and majority students, respectively.

Given S ∈ S, a pair of type functions τ, τ ′ ∈ T (S), and a student s ∈ S, we say that

τ ′ is obtained from τ by changing the type of s if the type of s is different while the

types of the other students stay the same. That is, τ(s) 6= τ ′(s) and for each s′ ∈ S \ {s},
τ(s) = τ ′(s).

Given S ∈ S, a pair of priority orderings �,�′∈ Π(S), and a student s ∈ S, we say that

�′ is an improvement over � for s if, when we move from � to �′, the priority order of

s weakly improves relative to each other student and strictly improves relative to at least

one student, while the priority relation within other students stays the same. That is, for

each s′ ∈ S, if s � s′ then s �′ s′; there exists s′ ∈ S \ {s} such that s′ � s and s �′ s′;
and for each s′, s′′ ∈ S \ {s}, s′ � s′′ if and only if s′ �′ s′′.

3 Axioms

3.1 Axioms for substitutable affirmative action

Capacity-filling requires that a student is rejected only if the capacity is full.13 That is,

capacity-filling ensures that no resource is wasted, even if there are not enough minority

13In the literature, capacity-filling is also called acceptance. Alkan (2001) is the first study which uses
the filling terminology where he uses the term quota filling.
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students with relatively low priorities who are in need of affirmative action.14

Capacity-filling: For each problem (S, τ,�), |C(S, τ,�)| = min{|S|, q}.

Neutrality requires that the choice only depends on the types of the students and the

relative priority ordering of the students in the choice set, and not on other characteristics

such as their names.

Neutrality: Let (S, τ,�) and (S ′, τ ′,�′) be a pair of problems such that |S| = |S ′| and for

each k ∈ {1, . . . , |S|}, the types of the k-th ranked students are the same at both problems,

i.e., τ(rk(�)) = τ ′(rk(�′)). Then, for each k ∈ {1, . . . , |S|}, rk(�) ∈ C(S, τ,�) if and only

if rk(�′) ∈ C(S ′, τ ′,�′).

Our next axiom, (affirmative) priority-compatibility, requires that a student is chosen

over a higher priority student only if the former student is a minority student and the

latter is a majority student.

Priority-compatibility: For each problem (S, τ,�), if s ∈ C(S, τ,�), s′ /∈ C(S, τ,�),

and s′ � s, then s ∈ Sm and s′ ∈ SM .

Since the above axioms constitute a minimal set of requirements for a choice rule with

affirmative action, in what follows we call a choice rule an affirmative action rule if it

satisfies capacity-filling, neutrality, and priority-compatibility.

Substitutability requires that a chosen student remains chosen when the set of students

shrinks, everything else the same.15

Substitutability: For each problem (S, τ,�) and a chosen student s ∈ C(S, τ,�), we

have s ∈ C(S ′, τ |S′ ,� |S′) for any S ′ ⊆ S such that s ∈ S ′.

Substitutability of institutions’ choice rules is crucial when designing centralized clearing-

houses to allocate seats from multiple institutions, since substitutability ensures stability of

the outcome (Hatfield and Milgrom, 2005; Hatfield and Kojima, 2008). In the remainder of

this paper, we study substitutable affirmative action rules.

14There are applications where some seats are exclusively reserved for minority applicants and cannot be
used for majority applicants even if the number of minority applicants is less than the number of reserved
seats. Choice rules in such applications might fail capacity-filling.

15Substitutability was first introduced in the choice literature by Chernoff (1954). It has been studied in
the literature under different names such as Chernoff’s axiom, Sen’s α, contraction consistency, or gross
substitutes (Kelso and Crawford, 1982).
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3.2 Monotonicity axioms

We introduce axioms on how a choice rule with affirmative action should respond to changes

in the types of students or in the priority orderings of the students. The general principle

underlying our axioms is that affirmative action is a limited resource where the minority

students are the potential beneficiaries and the intended beneficiaries are those minority

students with relatively low priorities who are in need of affirmative action.

Our first monotonicity axiom, monotonicity in priority improvements, is concerned with

an improvement in the priority rank of a minority student, other things equal. Since

intended beneficiaries are those minority students who are relatively low ranked, such a

change means a potential decrease in the number of intended beneficiaries, and therefore

no minority student should be adversely affected: all minority students who were chosen

before the change should still be chosen after the change.

Monotonicity in priority improvements (MPI): For each problem (S, τ,�), each

s ∈ Cm(S, τ,�), and each priority ordering �′ that is an improvement over � for s, we

have Cm(S, τ,�) ⊆ Cm(S, τ,�′).

The second monotonicity axiom, monotonicity in type changes, is concerned with a

change in the type of a chosen minority student (into a majority student), other things

equal. Since such a change again means a potential decrease in the number of intended

beneficiaries, no other minority student should be adversely affected: all other minority

students who were chosen before the change should still be chosen after the change.

Monotonicity in type changes (MTC): For each problem (S, τ,�), each s ∈ Cm(S, τ,�),

and each type function τ ′ that is obtained from τ by changing the type of s, we have

Cm(S, τ,�) \ {s} ⊆ Cm(S, τ ′,�).

4 Monotone and Substitutable Affirmative Action

In this section, we provide a representation for the substitutable affirmative action rules

that satisfy the monotonicity axioms. As a stepping stone, first, we introduce a gen-

eral and intuitive representation for substitutable affirmative action rules, called reserve

representation.
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Given a problem, we refer to the top-q ranked students (recall that q is the capacity)

as the top-tier students and the remaining students as the bottom-tier students. Note

that the top-tier students are the ones who would be chosen if there was no affirmative

action. Types and rankings of the top-tier students are critical in a reserve representation,

in that, at each problem, in addition to all the top-tier minority students, a certain number

of bottom-tier minority students, called a reserve number, are chosen instead of an equal

number of top-tier majority students.

Formally, a reserve function R associates with each problem (S, τ,�), a non-negative

integer R(S, τ,�) that is less than or equal to the number of top-tier majority students.

We require that R(S, τ,�) depend only on the types and the rankings of the top-tier

students, that is, for each (S, τ,�) and (S ′, τ ′,�′), if the k-th ranked students in (S, τ,�)

and (S ′, τ ′,�′) are of the same type for each k ∈ {1, . . . , q}, then R(S, τ,�) = R(S ′, τ ′,�′).

A choice rule C admits a reserve representation via a reserve function R if for each

problem (S, τ,�), C(S, τ,�) is obtainable as follows:

• choose all the top-tier minority students,

• choose the highest priority bottom-tier minority students until R(S, τ,�) of them

are chosen or none of them is left,

• and then choose the highest priority majority students until all seats are filled or no

student is left.

Given a choice rule and a problem, consider the set of bottom-tier minority students

who are chosen. We say that these minority students are chosen via affirmative action,

since they would not be chosen if the choice was solely based on the priority. Thus, in

a reserve representation, the reserve number of each problem determines the number of

minority students chosen via affirmative action in that problem.

Next, we introduce the bounded reserve representation, which additionally requires

that the reserve number changes by at most one in response to priority or type changes.

Formally, a choice rule C has a bounded reserve representation if C admits a reserve

representation via a reserve function R that satisfies the following condition, which provides

the bounds for the representation by requiring that the reserve number either stays the

same or increases by one in response to changing the type of a minority student, improving

the priority rank of a minority student, or worsening the priority rank of a majority student.
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Condition B: For each problem(S, τ,�),

B1. if τ ′ is obtained from τ by changing the type of a top-tier minority student, then

either R(S, τ ′,�) = R(S, τ,�) or R(S, τ ′,�) = R(S, τ,�) + 1.

B2. if �′ is obtained from � by improving the priority rank of a top-tier minority student,

then R(S, τ,�′) = R(S, τ,�) or R(S, τ,�′) = R(S, τ,�) + 1.

B3. if � is obtained from �′ by improving the priority rank of a top-tier majority student,

(i) R(S, τ,�′) = R(S, τ,�) or R(S, τ,�′) = R(S, τ,�) + 1,

(ii) R(S, τ,�′) = R(S, τ,�) if the student is one of the R(S, τ,�) lowest-ranked

top-tier majority students.16

Note that B2 and B3 require that the reserve number changes at most by one, independent

of the particular improvement level in the priority rank of a top-tier student. For example,

suppose that �′ is obtained from � by improving the priority rank of a top-tier minority

student just by one and as a result the reserve number increases by one. Then, suppose

that �′′ is obtained from �′ by improving the priority rank of the same top-tier minority

student by one again. Now, it follows from B2 that the reserve number cannot increase

further, since �′′ can be obtained from � by improving the priority rank of a top-tier

minority student by two.

Theorem 1. A choice rule is a substitutable affirmative action rule that satisfies mono-

tonicity in priority improvements and monotonicity in type changes if and only if it admits

a bounded reserve representation.

The proof is in Appendix A.1. It is not difficult to see that each substitutable affirmative

action rule admits a reserve representation where the reserve is independent from the

configuration of the bottom-tier. The crucial insight here is that the reserve can increase

by at most one in response of a type or a priority change.

The proof is build on the observation that the effects of B1−B3 can be imitated by a

removal of a student. For some intuition, consider a choice rule C and a problem (S, τ,�)

such that there is only one top-tier minority student, say s. Suppose that the type of s is

changed into a majority. Now, if the (q + 1)-th ranked student is a majority student, then

this type change can be imitated by removing s from the set of applicants S. To see this,

16That is, he is a top-tier majority student and the number of top-tier majority students who have lower
priority than him is less than R(S, τ,�).
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note that after both changes all top-tier students are majority students in the resulting

problems, and therefore the types and rankings of the top-tiers are the same. Now, to see

that the change in reserves must be limited by one in case of a type change, note that, by

substitutability, all the chosen students will remain chosen after the removal of s from S.

Then, capacity-filling limits the change in reserves by one.

5 Lexicographic Affirmative Action Rules

A prominent class of substitutable affirmative choice rules is the class of rules that admit a

lexicographic representation. We call these choice rules lexicographic affirmative action

rules. A choice rule admits a lexicographic representation if there exists a function

l : {1, . . . , q} → {0, 1}, called a lexicographic order, such that for each choice problem

(S, τ,�), C(S, τ,�) is obtainable by the following procedure. First, let �a denote the

affirmative priority ordering obtained from � by moving the minority students to the

top of �, while keeping the relative orderings among the minority students and among the

majority students the same.

Lexicographic Procedure:

Step 1: If l(1) = 0, then choose the highest priority student. If l(1) = 1, then

choose the highest �a-priority student.

Steps k ≥ 2: If l(k) = 0, then choose the highest priority student among the

remaining students. If l(k) = 1, then choose the highest �a-priority student

among the remaining students.

An interpretation of the lexicographic order is that it fixes an ordering of the available

seats, from Seat 1 to Seat q, and labels each seat k either as an open seat (l(k) = 0)

which will be allocated based on the given priority ordering � or as a reserve seat

(l(k) = 1) which will be allocated based on the affirmative priority ordering �a. In turn,

the lexicographic procedure allocates seats sequentially according to the lexicographic

order.
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5.1 An axiomatization of lexicographic affirmative action

We introduce a new axiom and characterize the whole class of lexicographic affirmative

action rules. First, remember that the monotonicity axioms require the following. If the

type of a chosen minority student is changed or his priority rank is improved, no minority

student is adversely affected, i.e., if such a change affects the choice, it should only be

by choosing new minority students. Our next axiom requires consistency in the way such

changes affect the choice.

Given a choice problem, changing the type of a chosen minority student is called effective

if it results in new chosen minority students. That is, given a problem (S, τ,�) and

s ∈ Cm(S, τ,�), changing the type of s is effective if Cm(S, τ ′,�)\Cm(S, τ,�) 6= ∅ where

τ ′ that is obtained from τ by changing the type of s.

The next axiom, consistency in effective type changes, requires that if changing the type

of a chosen minority student is effective, then a following change in the type of a lower

ranked chosen minority student is also effective (unless all minority students are already

chosen).

Consistency in effective type changes (CTC): Let (S, τ,�) be a given problem

and s, s′ ∈ Cm(S, τ,�) be such that s � s′. Let τ ′ be obtained from τ by chang-

ing the type of s and τ ′′ be obtained from τ by changing the types of both s and s′.

If Cm(S, τ ′,�) \ Cm(S, τ,�) 6= ∅, then we have Cm(S, τ ′′,�) \ Cm(S, τ ′,�) 6= ∅ unless

Cm(S, τ ′,�) = Sm(τ ′).

The motivation behind CTC is the following. The fact that changing the type of a

chosen minority student is effective reveals that every chosen minority student with a lower

priority is chosen via affirmative action both before and after the type change. Hence, a

further change in the type of a lower priority minority student should be effective as well.

Theorem 2. A choice rule is a substitutable affirmative action rule that satisfies monotonic-

ity in priority improvements, monotonicity in type changes, and consistency in effective

type changes if and only if it admits a lexicographic representation. The lexicographic

representation is unique.

To prove Theorem 2, we first construct a bounded reserve representation for a given

lexicographic affirmative action rule (see the lexicographic-to-reserve algorithm in Appendix

12



A.2). Then, we use this construction to prove that a choice rule that satisfies the mono-

tonicity axioms and CTC must coincide with a lexicographic affirmative action rule. The

proof of Theorem 2 is in Appendix A.2. Here, we provide an example of a choice rule that

admits a bounded reserve representation, but violates the CTC axiom and therefore does

not admit a lexicographic representation. In our discussion of the example, we provide

an intuition for the role that CTC plays in the proof of Theorem 2. Then, building on

this example, we formulate a new class of choice rules demonstrating that substitutable

affirmative action rules go beyond lexicographic choice rules in a way that can be relevant

for applications.

Example 1. Let q = 100. Let C be the choice rule with a reserve representation via the

following reserve function R. For each problem (S, τ,�), if the number of top-tier minority

students is

• at most 10, then R(S, τ,�) = 2;

• more than 10 but at most 20, then R(S, τ,�) = 1;

• more than 20, then R(S, τ,�) = 0.

It is easy to check that this is a bounded reserve representation. The choice rule C has

a simple structure and a clear interpretation: two, one, or zero minority students are

chosen via affirmative action if there are few, many, or enough top-tier minority students,

respectively, where the few, many, and enough categories are defined by the thresholds 10

and 20.

To see that C violates CTC, consider a problem (S, τ,�) such that there are exactly

11 top-tier minority students (their exact ranks are not important) and there are at least

two bottom-tier minority students. Let τ ′ be obtained from τ by changing the type of the

minority student with the highest priority. Now, there are 10 top-tier minority students

and the reserve number increases from 1 to 2. Therefore, this type change is effective, since

one of the bottom-tier minority students becomes chosen via affirmative action. Next,

consider τ ′′ that is obtained from τ ′ by a following change in the type of another top-tier

minority student. Now, there are 9 top-tier minority students and the reserve number

remains as 2. Therefore, the following change is not effective, since no additional bottom-tier

minority student is chosen. Hence, C violates CTC and does not admit a lexicographic

representation.
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The critical feature of the above example is that, when we start from a problem with

no top-tier minority student and change the types of the majority students to minority

one by one, the reserve number stays constant until a threshold, and decreases after the

threshold. The monotonicity axioms, in particular MTC, requires the reserve number to

change by at most one whenever it changes, but does not preclude it from staying constant

in some intervals. On the other hand, CTC rules out the possibility that the reserve number

increases in response to the type change of a chosen minority, yet remains constant in

response to a following change in the type of a lower ranked chosen minority student.

Building on Example 1, we obtain a general class of choice rules that are not lexicographic

but admit a bounded reserve representation. The common feature is that reserves are

stepwise adjusted by increments of one.

Stepwise-adjusted–reserves rule: A choice rule C admits a stepwise-adjusted–reserves

representation if it admits a reserve representation via a reserve function R such that there

exist thresholds 0 ≤ t1 ≤ . . . ≤ tr ≤ q, and for each problem (S, τ,�),

• if the number of top-tier minority students is in [0, t1], then R(S, τ,�) = r,

• for each i ∈ {1, . . . , r − 1}, if the number of top-tier minority students is in (ti, ti+1],

then R(S, τ,�) = r − i,
• if the number of top-tier minority students is in (tr, q], then R(S, τ,�) = 0.17

The class of stepwise-adjusted–reserves rules include some lexicographic choice rules. For

example, let q = 100 and consider C that admits a stepwise-adjusted–reserve representation

with thresholds 0, 1, 2, 3, 4. Observe that this choice rule is equivalent to the lexicographic

affirmative action rule where the reserve seats are the first 5 seats. In fact, the stepwise-

adjusted–reserves rules are generalizations of lexicographic affirmative action rules where

reserve seats precede open seats: they share the common feature that the number of top-tier

minority students, irrespective of their exact ranks, determines the number of minority

students to be chosen via affirmative action. The generality comes from the fact that, if a

lexicographic affirmative action rule admits a stepwise-adjusted–reserves representation,

then the thresholds in the representation must be consecutive. As we have illustrated above,

this is not a requirement for substitutable affirmative action. In fact, in some applications

17Note that, by definition of a reserve representation, the reserve number can not exceed the number of
top-tier majority students. Therefore, the thresholds must be such that the number of chosen students
does not exceed the capacity. Formally, for each i ∈ {0, . . . , r − 1}, we must have r − i ≤ q − ti+1.
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where there are many available seats, it might be more natural, and possibly simpler, to

have non-consecutive thresholds as in Example 1.

6 Conclusion

We have analyzed choice rules with affirmative action to allocate scarce resources. By their

very nature, an important step in designing an institutional choice rule and communicating

it with public is to understand how these choice rules respond to changes in the priorities

of the applicants or in their types. We have extended the standard formulation of a choice

problem by incorporating a type function and a priority ordering, and introduced axioms

on how a choice rule should respond to variations in these parameters. Our axiomatic

approach uncovers the two intentions behind substitutable affirmative action rules: (1)

to reserve some seats for affirmative action and (2) to use them only for the intended,

relatively low-priority, beneficiaries. As a consequence of our axiomatic approach, we

provide a foundation for lexicographic affirmative action rules. Moreover, we introduce a

new class of choice rules that goes beyond lexicographic affirmative action. We believe that

our new formulation of a choice problem and the general principles behind our new axioms

may facilitate analysis of choice rules with affirmative action in different applications with

specific institutional constraints.

A natural extension of our model is to consider multiple minority types. However, it

is not trivial how our axioms will extend to this setting and there are multiple different

possible extensions depending on the nature of the application. For example, what priority-

compatibility should require when there are multiple minority types is not straightforward

and in particular depends on whether there is an additional priority order over different

minority types. Our monotonicity axioms naturally extend by considering all minority

types as a single minority class, however there are multiple plausible directions to pursue

in terms of how a choice rule should respond to changing the type of a minority applicant

to another minority type. We leave the analysis of these extensions for future research.
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Appendix A Proofs

We start with introducing some notation. Let T (S, τ,�) denote the top-tier students in S at

(S, τ,�). Let Tm(S, τ,�) = Sm ∩T (S, τ,�) and TM (S, τ,�) = SM ∩T (S, τ,�) denote the

top-tier minority students and majority students, respectively. LetB(S, τ,�) = S\T (S, τ,�
) denote the bottom-tier students in S at (S, τ,�). Let Bm(S, τ,�) = Sm ∩B(S, τ,�) and

BM(S, τ,�) = SM ∩ B(S, τ,�) denote the bottom-tier minority students and majority

students, respectively.

Given a pair of choice problems (S, τ,�) and (S ′, τ ′,�′), we say that top-tiers coincide

if T (S, τ,�) = T (S ′, τ ′,�′) = S∗ and the relative ordering of the students in S∗ with

respect to � and �′ are the same (when bottom-tiers coincide is defined similarly).

Given a choice rule C and a problem (S, τ,�), let CA(S, τ,�) = Cm(S, τ,�)∩B(S, τ,�)

denote the set of minority students who are chosen via affirmative action.

A q-ordering is a priority ordering over a set of q students of two possible types:

minority or majority. More precisely, a q-ordering is a problem ρ = (Sρ, τ ρ,�ρ) such that

|Sρ| = q. Let Q denote the set of all q-orderings. Given a q-ordering ρ = (Sρ, τ ρ,�ρ) ∈ Q,

we will simply write s ∈ ρ instead of s ∈ S, s ρ s′ instead of s �ρ s′, and denote the

set of minority and majority students in ρ by ρm and ρM , respectively. Also, for each

k ∈ {1, . . . , q}, let rk(ρ) denote the k-th ranked student in ρ, i.e., s = rk(ρ) if and only if

|{s′ ∈ ρ \ {s} : s′ ρ s}| = k − 1, and rank(s, ρ) denote the rank of student s in ρ.

Given a problem (S, τ,�), we say that the top-tier of S at (S, τ,�) coincides with the

q-ordering ρ if the sets of students in T (S, τ,�) and ρ, and their relative orderings in �
and ρ, are the same. Recall that we require R(S, τ,�) depend only on the types and the

rankings of the top-tier students. Therefore, we can equivalently define a reserve function

as a mapping R : Q → {0, . . . , q} that associates with each q-ordering a number that is

less than or equal to the number of majority students in the q-ordering such that for each

ρ, ρ′ ∈ Q, if for each k ∈ {1, . . . , q}, the k-th ranked students in ρ and ρ′ are of the same

type (minority or majority), then R(ρ) = R(ρ′).
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A.1 Proof of Theorem 1

Proof. (=⇒) Suppose that C is a substitutable affirmative action rule that satisfies the

monotonicity axioms. We first show, in Lemma 1, that the priority ordering at the bottom-

tier is irrelevant for the number of minority students to be chosen.

Lemma 1. Suppose that C is a substitutable affirmative action rule. Let (S, τ,�) and

(S, τ,�′) be a pair of choice problems such that T (S, τ,�) coincides with T (S, τ,�′). Then,

the same number of minority students are chosen at both problems, i.e., |Cm(S, τ,�)| =
|Cm(S, τ,�′)|.

Proof. By priority-compatibility, any majority student who is ranked below rank q at

(S, τ,�) or (S, τ,�′) is not chosen. Let S ′ be obtained from S by removing all the majority

students who are ranked below rank q at (S, τ,�), i.e., S ′ = Sm ∪ T (S, τ,�). By capacity-

filling and substitutability, C(S, τ,�) = C(S ′, τ |S′ ,� |S′) and C(S, τ,�′) = C(S ′, τ |S′ ,�′

|S′). Now, note that for each k ∈ {1, . . . , |S ′|}, the types of the k-th ranked students are

the same at problems (S ′, τ |S′ ,� |S′) and (S ′, τ |S′ ,�′ |S′). Then, it follows from neutrality

that |Cm(S ′, τ |S′ ,� |S′)| = |Cm(S ′, τ |S′ ,�′ |S′)|. Hence, |Cm(S, τ,�)| = |Cm(S, τ,�′)|.

Consider the following reserve function R. For each ρ ∈ Q, consider a problem (S, τ,�)

such that |Sm| = q and ρ coincides with the top-tier of S. Let R(ρ) = |CA(S, τ,�)|, the

number of minority students who are chosen via affirmative action. Note that, by neutrality

of C, the reserve function R is well-defined. By Lemma 1, C admits a reserve representation

via R. We will show that R satisfies condition A.

Satisfies B1: Let ρ, ρ′ ∈ Q be such that ρ′ is obtained from ρ by changing the type of a

minority m ∈ ρ. By MTC, R(ρ′) ≥ R(ρ). We will show that R(ρ′) ≤ R(ρ) + 1. Let (S, τ,�)

be a problem such that T (S, τ,�) coincides with ρ, the (q + 1)-th ranked student is a

majority student M , and |Sm| = q.

Let S ′ = S \ {m} and consider the problem (S ′, τ |S′ ,� |S′). By substitutability, C(S, τ,�
)\{m} ⊆ C(S ′, τ |S′ ,� |S′), and by capacity-filling, at most one new minority student can be

chosen via affirmative action at (S ′, τ |S′ ,� |S′), i.e., |CA(S ′, τ |S′ ,� |S′)| ≤ |CA(S, τ,�)|+ 1.

Now note that M has rank q at (S ′, τ |S′ ,� |S′). Consider the priority ordering �′∈ Π(S ′)

obtained from � |S′ by improving the rank of M to the rank of m at �, while keeping the
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relative rankings of the other students the same. By neutrality and MPI,18 |CA(S ′, τ |S′ ,�′

)| ≤ |CA(S, τ |S′ ,� |S′)|. Therefore, |CA(S ′, τ |S′ ,�′)| ≤ |CA(S, τ,�)| + 1. Now, since

T (S ′, τ |S′ ,�′) coincides with ρ′ and T (S, τ,�) coincides with ρ, we get R(ρ′) ≤ R(ρ) + 1.

Satisfies B2: Let ρ, ρ′ ∈ Q be such that ρ′ is an improvement over ρ for a minority

student m ∈ ρ. By MPI, R(ρ′) ≥ R(ρ). We will show that R(ρ′) ≤ R(ρ) + 1. Let (S, τ,�)

be a problem such that T (S, τ,�) coincides with ρ, the (q + 1)-th ranked student is a

majority student M , and |Sm| = q. Let �′∈ Π(S) be obtained from � by improving the

rank of m to its rank at ρ′, while keeping the relative rankings of the other students the

same. Note that |CA(S, τ,�)| = R(ρ) and |CA(S, τ,�′)| = R(ρ′).

Let S ′ = S \ {m}, and consider the problems (S ′, τ |S′ ,� |S′) and (S ′, τ |S′ ,�′ |S′). By

substitutability, C(S, τ,�) \ {m} ⊆ C(S ′, τ |S′ ,� |S′), and by capacity-filling, at most one

new minority student can be chosen via affirmative action when we move from (S, τ,�) to

(S ′, τ |S′ ,� |S′), i.e., |CA(S ′, τ |S′ ,� |S′)| ∈ {R(ρ), R(ρ) + 1}. By similar arguments, we have

|CA(S ′, τ |S′ ,�′ |S′)| ∈ {R(ρ′), R(ρ′) + 1}. Moreover, |CA(S ′, τ |S′ ,� |S′)| = |CA(S ′, τ |S′ ,�′

|S′)| since T (S ′, τ |S′ ,� |S′) and T (S ′, τ |S′ ,�′ |S′) coincide. Hence, R(ρ′) ≤ R(ρ) + 1.

Satisfies B3-i: Let ρ, ρ′ ∈ Q be such that ρ is an improvement over ρ′ for a majority

student M ∈ ρ. By MPI, R(ρ) ≤ R(ρ′).19 Next, we show that R(ρ′) ≤ R(ρ) + 1. Let

(S, τ,�) be a problem such that T (S, τ,�) coincides with ρ, the (q + 1)-th ranked student

is a majority student M ′, and |Sm| = q. Let �′∈ Π(S) be obtained from � by moving M

down to its rank at ρ′, while keeping the relative rankings of the other students the same.

Note that |CA(S, τ,�′)| = R(ρ′) and |CA(S, τ,�)| = R(ρ).

Let S ′ = S \ {M} and consider the problems (S ′, τ |S′ ,� |S′) and (S ′, τ |S′ ,�′ |S′). By

substitutability, C(S, τ,�) \ {M} ⊆ C(S ′, τ |S′ ,� |S′), and by capacity-filling, at most one

new minority student can be chosen via affirmative action when we move from (S, τ,�) to

(S ′, τ |S′ ,� |S′), i.e., |CA(S ′, τ |S′ ,� |S′)| ∈ {R(ρ), R(ρ) + 1}. By similar arguments, we have

|CA(S ′, τ |S′ ,�′ |S′)| ∈ {R(ρ′), R(ρ′)+1}. Moreover, |CA(S ′, τ |S′ ,� |S′)| = |CA(S ′, τ |S′ ,�′ |S′)|,
since T (S ′, τ |S′ ,� |S′) and T (S ′, τ |S′ ,�′ |S′) coincide. Hence, R(ρ′) ≤ R(ρ) + 1.

Satisfies B3-ii: Suppose that ρ′ is obtained from ρ by worsening the priority rank of

18Note that, under neutrality, improvement of the priority order of M can be expressed as a consecutive
worsening of the priority orderings of several chosen minority students.

19Like before, under neutrality, improvement of the priority order of M can be expressed as a consecutive
worsening of the priority orderings of several chosen minority students.
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a majority student M /∈ C(S, τ,�), where (S, τ,�) is a problem such that T (S, τ,�)

coincides with ρ. Let (S, τ,�′) be a problem such that T (S, τ,�′) coincides with ρ′. By

MPI, R(ρ) ≤ R(ρ′). Then, since ρ is an improvement over ρ′ for M and M /∈ C(S, τ,�),

we have M /∈ C(S, τ,�′).

Let S ′ = S \ {M} and consider the problems (S ′, τ |S′ ,� |S′) and (S ′, τ |S′ ,�′ |S′). Then,

by substitutability and capacity-filling, C(S, τ,�) = C(S ′, τ |S′ ,� |S′) and |CA(S ′, τ |S′ ,�
|S′)| = R(ρ). By similar arguments, we have |CA(S ′, τ |S′ ,�′ |S′)| = R(ρ′). Since we showed,

in proving that R satisfies B3-i, that |CA(S ′, τ |S′ ,� |S′)| = |CA(S ′, τ |S′ ,�′ |S′)|, we get

R(ρ′) = R(ρ).

(⇐=) Suppose that C admits a reserve representation via a reserve function R satisfying

conditions B1−B3. It is straightforward to see that C satisfies all the axioms except for

substitutability. To see that C satisfies substitutability, let (S, τ,�) be a problem and let

s ∈ C(S, τ,�), s′ ∈ S \ {s}. Let S ′ = S \ {s′} and consider the problem (S ′, τ |S′ ,� |S′).
We want to show that s ∈ C(S ′, τ |S′ ,� |S′). Let ρ ∈ Q be the q-ordering that coincides

with T (S, τ,�) and ρ′ ∈ Q be the q-ordering that coincides with T (S ′, τ |S′ ,� |S′).

If s′ ∈ B(S, τ,�), then ρ = ρ′ and R(ρ) = R(ρ′), and clearly s ∈ C(S ′, τ |S′ ,� |S′). So

suppose that s′ ∈ T (S, τ,�), equivalently s′ ∈ ρ. Then, there exists s∗ ∈ B(S, τ,�) that

moves to the top when s′ is removed from S, i.e., {s∗} = T (S ′, τ |S′ ,� |S′) \ T (S, τ,�).

Case 1: s′ ∈ Sm and s∗ ∈ Sm. By Condition B2, R(ρ′) ∈ {R(ρ) − 1, R(ρ)}. Now, if

s ∈ SM , then s ∈ C(S ′, τ |S′ ,� |S′), since R(ρ′) ≤ R(ρ) implies no more minority student

is chosen via affirmative action. If s ∈ Sm, then s ∈ C(S ′, τ |S′ ,� |S′). To see this, note

that R(ρ′) ≥ R(ρ) − 1 implies there is at most one minority student who is chosen via

affirmative action at (S, τ,�) but is not chosen via affirmative action at (S ′, τ |S′ ,� |S′).
Since, we already have s∗, who is now chosen from the top-tier, as such a student, there

can not be a second one.

Case 2: s′ ∈ Sm and s∗ ∈ SM . By Conditions B1 and B2, R(ρ′) ∈ {R(ρ)−1, R(ρ), R(ρ)+

1}.20 Also, by Conditions B1 and B3 − i, R(ρ′) ∈ {R(ρ), R(ρ) + 1, R(ρ) + 2}.21 Hence,

R(ρ′) ∈ {R(ρ), R(ρ) + 1}.
20By Condition B2, moving s′ down to rank q decreases R by at most one, and then, by Condition B1,

changing the type of s′ to majority increases R by at most one.
21By Condition B1, changing the type of s′ to majority increases R by at most one, and then, by

Condition B3− i, moving s′ down to rank q increases R by at most one.
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Now, if s ∈ Sm, then clearly s ∈ C(S ′, τ |S′ ,� |S′) since R(ρ′) ≥ R(ρ). If s ∈ SM , then

s ∈ C(S ′, τ |S′ ,� |S′). To see this, first note that R(ρ′) ≤ R(ρ) + 1 implies at most one

more minority student can be chosen via affirmative action at (S ′, τ |S′ ,� |S′). Then, since

a minority student, s′, who was previously chosen from T (S, τ,�) is now removed, all

previously chosen majority students are still chosen.

Case 3: s′ ∈ SM and s∗ ∈ Sm. By Conditions B1 and B3 − i, R(ρ′) ∈ {R(ρ) −
1, R(ρ), R(ρ) + 1}. Also, by Conditions B1 and B2, R(ρ′) ∈ {R(ρ) − 2, R(ρ) − 1, R(ρ)}.
Hence, R(ρ′) ∈ {R(ρ)− 1, R(ρ)}.

Now, if s ∈ SM , then s ∈ C(S ′, τ |S′ ,� |S′), since R(ρ′) ≤ R(ρ) implies no more minority

student is chosen via affirmative action. If s ∈ Sm, then s ∈ C(S ′, τ |S′ ,� |S′). To see this,

first note that R(ρ′) ≥ R(ρ)−1 implies there is at most one minority student who is chosen

via affirmative action at (S, τ,�) but is not chosen via affirmative action at (S ′, τ |S′ ,� |S′).
Since, we already have s∗, who is now chosen from the top-tier, as such a student, there

can not be a second one.

Case 4: s′ ∈ SM and s∗ ∈ SM . Suppose that s′ /∈ C(S, τ,�). Since R represents C, by

Condition B, R(ρ′) = R(ρ). It follows that C(S, τ,�) = C(S ′, τ |S′ ,� |S′), which implies

s ∈ C(S ′, τ |S′ ,� |S′).

Suppose that s′ ∈ C(S, τ,�). Then, by Condition B3− i, R(ρ′) ∈ {R(ρ), R(ρ) + 1}. Now,

if s ∈ Sm, then s ∈ C(S ′, τ |S′ ,� |S′), since R(ρ′) ≥ R(ρ). If s ∈ SM , then s ∈ C(S ′, τ |S′ ,�
|S′). To see this, first note that R(ρ′) ≤ R(ρ) + 1 implies at most one less majority student

is chosen at (S ′, τ |S′ ,� |S′). Since a majority student, s′, who was chosen at (S, τ,�) is

now removed, all other previously chosen majority students are still chosen

A.2 Proof of Theorem 2

Proof. We first show that a choice rule that admits a lexicographic representation also

admits a reserve representation.

Lemma 2. If a choice rule C admits a lexicographic representation via a lexicographic

order l, then C admits a reserve representation via a reserve function R defined through

the following algorithm.

Lexicographic-to-reserve algorithm: For each ρ ∈ Q,
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Step 1: Let t1 be the first rank such that l and ρ differ in types; if there is no

such rank, then stop. Let m1 = rt1(ρ), and proceed as follows:

(i) If l(t1) = 0, then change the type of m1 to obtain ρ1.

(ii) If l(t1) = 1, then improve the priority rank of m1 to rank t1 to obtain ρ1.

Steps k ≥ 2: Let tk be the first rank such that l and ρk−1 differ in types; if

there is no such rank, then stop (note that tk > tk−1). Let mk = rtk(ρk−1) and

proceed as follows:

(i) If l(tk) = 0, then change the type of mk to obtain ρk.

(ii) If l(tk) = 1, then improve the priority rank of mk to rank tk to obtain ρk.

Note that the algorithm stops at most in q steps. Let ρ∗ be the final q-ordering. Set

R(ρ) =
∑

k∈{1,...,q} l(k)− |ρ∗m|.

Proof. Let (S, τ,�) be an arbitrary problem. Let ρ ∈ Q coincide with T (S, τ,�). Note that

in the lexicographic-to-reserve algorithm at ρ, if the type of a minority student is changed

at any step, then that minority student must be allocated an open seat at the lexicographic

procedure at (S, τ,�); if the priority rank of a minority student is improved at any step,

then that minority student must be allocated a reserve seat at the Lexicographic procedure

at (S, τ,�). Therefore, ρ∗m is the set of minority students in the top-tier who are allocated

reserve seats. Now, since there are
∑

k∈{1,...,q} l(k) reserve seats in the lexicographic order,∑
k∈{1,...,q} l(k)− |ρ∗m| minority students from the bottom-tier will be chosen (if there are

fewer minority students at the bottom-tier, all will be chosen). Hence, C admits a reserve

representation via R.

We are now ready to prove Theorem 2.

(=⇒) Suppose that C substitutable affirmative action rule that satisfies the monotonicity

axioms and CTC. By Proposition 1, C admits a reserve representation via a reserve

function R satisfying Condition B. In the following lemma, by using the language of

reserve representation, we show that if improving the priority of a chosen minority student

is effective, then a following change in the type of a lower ranked chosen minority student

is also effective (unless all minority students are already chosen). In the vein of CTC, this

requirement can be thought of as consistency in effective priority improvements.
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Lemma 3. Let ρ, ρ′, ρ′′ ∈ Q such that ρ′ is an improvement over ρ for a minority student

s and ρ′′ is obtained from ρ′ by changing the type of another minority student s′ such that

s ρ s′. If R(ρ′) = R(ρ) + 1 then R(ρ′′) = R(ρ′) + 1.

Proof. Since R(ρ′) = R(ρ) + 1, by neutrality, there exists a majority student M such that

the unit increase in the reserve number occurs, when s moves right on top of M . Since, for

each problem we require the reserve number depend only on the types and the rankings of

the top-tier students, we can assume without loss of generality that s and M are ranked

consecutively at ρ and ρ′ (in reverse orders).

Next, let ρ∗ be the q-ordering obtained from ρ by changing the type of M into minority.

Then, since R satisfies B1, we have R(ρ) ≥ R(ρ∗). Therefore, R(ρ′) > R(ρ∗). Now, note

that ρ′ is obtained from ρ∗ by changing the type of s. Since R(ρ′) > R(ρ∗), this type change

is effective. Then, since ρ′′ is obtained from ρ′ by changing the type of s′, by CTC, this

type must also be effective. Thus, we conclude that R(ρ′′) = R(ρ′) + 1.

Lemma 4 (Type-supermodularity). Let ρ, ρ′, ρ′′ ∈ Q. If ρ′ is obtained from ρ by changing

the type of a minority student s′, ρ′′ is obtained from ρ by changing the type of another

minority student s′′ with s′ � s′′, and ρ′′′ is obtained from ρ by changing the types of both

s′ and s′′, then

R(ρ′′′)−R(ρ) ≥ [R(ρ′)−R(ρ)] + [R(ρ′′)−R(ρ)]. (TS)

Proof. Since R satisfies condition B1, we have R(ρ′), R(ρ′′) ∈ {R(ρ), R(ρ) + 1}. Also by

B1, we have R(ρ′′′) ∈ {R(ρ′), R(ρ′) + 1} and R(ρ′′′) ∈ {R(ρ′′), R(ρ′′) + 1}. Note that these

already imply that if [R(ρ′)−R(ρ)] + [R(ρ′′)−R(ρ)] ∈ {0, 1}, then TS holds. Suppose that

R(ρ′)−R(ρ) = 1 and R(ρ′′)−R(ρ) = 1, but R(ρ′′′)−R(ρ) < 2.

Let (S, τ,�) be a problem such that T (S, τ,�) coincides with ρ and B(S, τ,�) consists of

R(ρ) + 2 minority students, where the lowest ranked two minority students are m1 and m2,

with m1 � m2. Note that Cm(S, τ,�) = Sm \ {m1,m2}. Now, let τ ′ be obtained from τ by

changing the type of s′. Note that T (S, τ ′,�) coincides with ρ′ and m1 ∈ Cm(S, τ ′,�), i.e.,

changing the type of s′ is effective at (S, τ ′,�). Let τ ′′ be obtained from τ ′ be changing the

type of s′′. By CTC, this change should still be effective, and therefore m2 ∈ Cm(S, τ ′′,�).

Since T (S, τ ′′,�) coincides with ρ′′′, this contradicts that R(ρ′′′)− R(ρ) < 2. Hence, TS

holds.

25



Lemma 5 (Priority-supermodularity). Let ρ, ρ′, ρ′′ ∈ Q. If ρ′ is an improvement over ρ

for a minority student s and ρ′′ is obtained from ρ by changing the type of another minority

student s′ such that s � s′, and ρ′′′ is obtained from ρ′ by changing the type of s′, then

R(ρ′′′)−R(ρ) ≥ [R(ρ′)−R(ρ)] + [R(ρ′′)−R(ρ)]. (PS)

Proof. Follows by similar arguments as in the proof of Lemma 4, with the modifications

that Condition B2 is invoked instead of B1 and Lemma 3 is invoked instead of CTC.

Next, we introduce a definition that is crucial for the rest of the proof. A q-ordering

ρ ∈ Q is critical if changing the type or improving the priority order of any minority

student increases the reserve.22 That is, for each ρ′ ∈ Q that is obtained from ρ by changing

the type of a minority student or is an improvement over ρ for a minority student, we have

R(ρ′) = R(ρ) + 1. Let C denote the set of all critical q-orderings.

Lemma 6. Let ρ ∈ C and k ∈ {1, . . . , q}. If ρ′ ∈ Q is obtained from ρ by changing the

type of the lowest ranked minority student, then ρ′ ∈ C as well.

Proof. Note that at ρ′, changing the type or improving the priority order of any minority

student still increases the reserve by type-supermodularity and priority-supermodularity,

respectively. Therefore, ρ′ ∈ C.

Lemma 7. For each ρ, ρ′ ∈ C and t ∈ {1, . . . , q}, if t is the first rank at which ρ has

a minority student while ρ′ has a majority student, then ρ′ does not have any minority

student after rank t, i.e., for each rank k > t, rk(ρ
′) ∈ SM .

Proof. Suppose otherwise. Let k∗ > t be the lowest rank such that rk∗(ρ
′) ∈ Sm. Let ρ∗

be obtained from ρ by changing the type of each minority student m with rank k > t

in ρ. Let ρ∗∗ be obtained from ρ′ by changing the type of each minority student m with

rank k > k∗ in ρ′. By successive application of Lemma 6, such that the type of the lowest

ranked minority student is changed at each step, we get ρ∗, ρ∗∗ ∈ C.

Next, we show that R(ρ∗) = R(ρ∗∗). To see this, let ρ′′ be obtained from ρ∗ by changing

the type the minority student with rank t in ρ∗. Since ρ∗ ∈ C, R(ρ′′) = R(ρ∗) + 1. Next

22Note that if ρ does not have any minority student, then it is critical.
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note that ρ′′ can be also obtained from ρ∗∗ by changing the type of the minority student

with rank k∗ in ρ∗. Since ρ∗∗ ∈ C, R(ρ′′) = R(ρ∗∗) + 1. Therefore, R(ρ∗) = R(ρ∗∗).

Now, let ρ∗∗∗ be obtained from ρ∗∗ by improving the rank of rk∗(ρ
′) to t. Since ρ∗∗ ∈ C,

R(ρ∗∗∗) = R(ρ∗∗) + 1. Since for each k ∈ {1, . . . , q}, the k-th ranked students in ρ∗ and ρ∗∗∗

are of the same type, it follows from neutrality that R(ρ∗) = R(ρ∗∗∗), which contradicts to

R(ρ∗) = R(ρ∗∗).

Lemma 8. For each pair ρ, ρ′ ∈ C, if ρ and ρ′ have the same number of minority students,

i.e., |ρm| = |ρ′m|, then ρ and ρ′ have the same type configuration, i.e., for each k ∈ {1, . . . , q},
the k-th ranked students in ρ and ρ′ are of the same type.

Proof. Follows from Lemma 7.

Lemma 9. The sum of the number of minority students in a critical q-ordering and the

reserve of the critical q-ordering is constant among all critical q-orderings. That is, for

each ρ, ρ′ ∈ C, |ρm|+R(ρ) = |ρ′m|+R(ρ′).

Proof. Let ρ, ρ′ ∈ C. If |ρm| = |ρ′m|, then it follows from Lemma 8 that R(ρ) = R(ρ′).

So suppose, without loss of generality, that |ρm| > |ρ′m|. Let ρ∗ ∈ Q be obtained from

ρ by changing the types of all minority students, and ρ∗∗ ∈ Q be obtained from ρ′ by

changing the types of all minority students. Note that, by Lemma 6, if we start with a

critical q-ordering ρ0, then by changing the type of the lowest ranked minority student, we

obtain another critical q-ordering ρ1 with R(ρ1) = R(ρ0) + 1. Therefore, ρ∗, ρ∗∗ ∈ C and

R(ρ∗) = R(ρ) + |ρm| and R(ρ∗∗) = R(ρ′) + |ρ′m|. Now, since ρ∗ and ρ∗∗ have the same type

configuration, we get R(ρ∗) = R(ρ∗∗∗). It follows that R(ρ) + |ρm| = R(ρ′) + |ρ′m|.

Constructing the lexicographic order: Let κ denote the constant such that for each

ρ ∈ C, |ρm|+R(ρ) = κ. Let l : {1, . . . , q} → {0, 1} be the function defined as follows: for

each k ∈ {1, . . . , q}, l(k) = 1 if and only if there exists a ρ ∈ C such that τ(rk(ρ)) = 1. Note

that for each ρ ∈ C that has exactly κ minority students, which is the maximum number

of minority students a critical q-ordering can have, by Lemma 9, for each k ∈ {1, . . . , q},
l(k) = τ(rk(ρ)). Therefore,

∑
k∈{1,...q} l(k) = κ.

Lemma 10. Let ρ ∈ Q. If there exists t ∈ {1, . . . , q} such that for each k < t, τ(rk(ρ)) =

l(k) and for each k ≥ t, τ(rk(ρ)) = 0, then ρ ∈ C.
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Proof. Let ρ′ ∈ Q be obtained from ρ such that for each k ≥ t, the type of the majority

student rk(ρ) is converted to minority if and only if l(k) = 1. It follows from the construction

of l that ρ′ ∈ C. Then, by successive application of Lemma 6, such that the type of the

lowest ranked minority student in ρ′ is changed at each step until the minority student

with rank k is reached, we get ρ ∈ C.

Lemma 11. Let ρ ∈ Q and m ∈ ρm with m = rt(ρ) for some t ∈ {1, . . . , q} be such that

• l(t) = 0, and

• the type configuration of ρ coincides with l up to rank t, i.e., for each k ∈ {1, . . . , t− 1},
τ(rk(ρ)) = l(k).

If ρ′ ∈ Q is obtained from ρ by changing the type of m, then R(ρ′) = R(ρ).

Proof. By contradiction suppose that R(ρ′) = R(ρ) + 1. Let ρ∗ be obtained from ρ by

changing the types of all minority students whose rank are greater than t, i.e., for each k > t,

τ(ρ∗k) = 0. Let ρ∗∗ be obtained from ρ∗ by changing the type of m. Since R(ρ′) = R(ρ) + 1,

by Lemma 4, successive application of TS implies R(ρ∗∗) ≥ R(ρ∗) + 1. Since R satisfies

B1, by Proposition 1, we also have R(ρ∗∗) ≤ R(ρ∗) + 1. Therefore, R(ρ∗∗) = R(ρ∗) + 1.

Now, note that for each k ∈ {1, . . . , q}, k < t implies τ(rk(ρ
∗∗)) = l(k) and k ≥ t implies

τ(rk(ρ
∗∗)) = 0. Then, it follows from Lemma 10 that ρ∗∗ ∈ C. Next, we investigate two

cases separately.

Case 1: For each k > t, l(k) = 0. Since
∑

k∈{1,...q} l(k) = κ, this implies
∑

k∈{1,...t} l(k) = κ.

Therefore, |ρ∗m| = κ+ 1. Consider ρ∗∗∗ which is obtained from ρ∗ by successively changing

the types of all minority students such that the type of the lowest ranked minority student

is changed at each step.

Note that at the first step, the type of m is changed and ρ∗∗ ∈ C is obtained. As we

showed before, R(ρ∗∗) = R(ρ∗) + 1. By proceeding similarly, at each following step, since

we change the type of a minority student at a critical ordering, the reserve increases by one,

and by Lemma 6 we obtain another critical ordering. Hence, we eventually get ρ∗∗∗ ∈ C
with R(ρ∗∗∗) = R(ρ∗) + κ+ 1. But since ρ∗∗∗ ∈ C, by Lemma 9, R(ρ∗∗∗) ≤ κ. Thus, we get

a contradiction.

Case 2: There exists k∗ > t such that l(k∗) = 1. Suppose, without loss of generality, that

k∗ is the smallest such rank, i.e, for each k ∈ {t, . . . , k∗ − 1}, l(k) = 0.
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Consider ρ∗↓ which is obtained from ρ∗ by moving m down to rank k∗. First, note that

for each k ∈ {1, . . . , q}, k < k∗ + 1 implies τ(rk(ρ
∗↓)) = l(k) and k ≥ k∗ + 1 implies

τ(rk(ρ
∗↓)) = 0. Then, it follows from Lemma 10 that ρ∗↓ ∈ C. Since ρ∗∗, ρ∗↓ ∈ C and

|ρ∗∗m | = |ρ∗↓m | − 1, it follows from Lemma 9 that R(ρ∗∗) = R(ρ∗↓) + 1.

Since ρ∗↓ ∈ C and ρ∗ is obtained from ρ∗↓ by improving the priority rank of a minority

student, we have R(ρ∗) = R(ρ∗↓) + 1. But, since we also have R(ρ∗∗) = R(ρ∗↓) + 1, this

implies R(ρ∗∗) = R(ρ∗), a contradiction.

Lemma 12. Let ρ ∈ Q and m ∈ ρm with m = rt(ρ) for some t ∈ {1, . . . , q} be such that

• there exists k∗ ∈ {1, . . . , t} such that the type configuration of ρ coincides with l up

to rank k∗, i.e., for each k ∈ {1, . . . , k∗ − 1}, τ(rk(ρ)) = l(k),

• τ(rk∗(ρ)) = 0 and l(k∗) = 1, and

• for each rank k ∈ {k∗ + 1, . . . , t− 1}, τ(rk(ρ)) = 0.

If ρ′ is obtained from ρ by improving the priority rank of m to rank k∗, then R(ρ′) = R(ρ).

Proof. By contradiction, suppose that R(ρ′) = R(ρ) + 1. Let ρ∗ be obtained from ρ by

changing the types of all minority students whose rank are greater than t, i.e., for each

k > t, τ(ρ∗k) = 0. Let ρ∗↑ be obtained from ρ∗ by improving the priority rank of m to rank

k∗.

First, note that since R(ρ′) = R(ρ) + 1, by Lemma 5, successive application of PS implies

R(ρ∗↑) ≥ R(ρ∗)+1. Since R satisfies B2, by Proposition 1, we also have R(ρ∗↑) ≤ R(ρ∗)+1.

Therefore, R(ρ∗↑) = R(ρ∗) + 1. Moreover, note that for each k ∈ {1, . . . , q}, k < k∗ + 1

implies τ(rk(ρ
∗↑)) = l(k) and k ≥ k∗ + 1 implies τ(rk(ρ

∗↑)) = 0. Then, it follows from

Lemma 10 that ρ∗↑ ∈ C.

Finally, let ρ∗∗ be obtained from ρ∗ by changing the type of m. Note that ρ∗∗ can

also be obtained from ρ∗↑ by changing the type of m. Since ρ∗↑ ∈ C, it follows that

R(ρ∗∗) = R(ρ∗↑) + 1. Since we have R(ρ∗↑) = R(ρ∗) + 1, this implies R(ρ∗∗) = R(ρ∗) + 2.

But by Proposition 1, this contradicts that R satisfies B1.

Now, consider the choice rule C ′ that admits a lexicographic representation via l. We

conclude by showing that C coincides with C ′. By Proposition 2, C ′ admits a reserve

representation via R′ which is defined through the lexicographic-to-reserve algorithm.
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Let (S, τ,�) be an arbitrary problem. Let ρ ∈ Q coincide with T (S, τ,�). Consider the

steps of the lexicographic-to-reserve algorithm at ρ.

Step 1: Let t1 be the first rank such that l and ρ differ in types, i.e., l(t1) 6=
τ(rt1(ρ)). Let m1 = rt1(ρ), and then proceed as follows:

(i) If l(t1) = 0, then change the type of m1 to obtain ρ1. Note that, by Lemma

11, R(ρ1) = R(ρ).

(ii) If l(t1) = 1, then improve the priority rank of m1 to rank t1 to obtain ρ1.

Note that, by Lemma 12, R(ρ1) = R(ρ).

Steps k ≥ 2: Let tk be the first rank such that l and ρk−1 differ in types (note

that tk > tk−1). Let mk = rtk(ρk−1), and then proceed as follows:

(i) If l(tk) = 0, then change the type of mk to obtain ρk. Note that, by Lemma

11, R(ρk) = R(ρk−1).

(ii) If l(tk) = 1, then improve the priority rank of mk to rank tk to obtain ρk.

Note that, by Lemma 12, R(ρk) = R(ρk−1).

Let ρ∗ be the final value. By the construction of the algorithm, we have R(ρ) = R(ρ∗).

Moreover, observe that ρ∗ ∈ C and therefore R(ρ) = R(ρ∗) = κ − |ρ∗m|. By Lemma 2,

R′(ρ) = κ− |ρ∗m|. Hence, R(ρ) = R′(ρ), and since ρ was arbitrary, C coincides with C ′.

Uniqueness: To see that the lexicographic representation is unique, by contradiction

suppose C has two lexicographic representations via distinct l and l′. First, note that∑
k∈{1,...,q} l(k) =

∑
k∈{1,...,q} l

′(k) since otherwise, it is easy to construct a problem where

there is no minority student at the top-tier and different numbers of minority students are

chosen by following the lexicographic procedures with respect to l and l′. Let ρ and ρ′ be

two q-orderings that coincide with l and l′, respectively, that is, for each k ∈ {1, . . . , q},
τ(rk(ρ)) = 1 if and only if l(k) = 1 and τ(rk(ρ

′)) = 1 if and only if l′(k) = 1. Note that

ρ, ρ′ ∈ C and |ρm| = |ρ′m|. But then it follows from Lemma 8 that ρ and ρ′ have the same

type configuration, which implies that l and l′ are the same, a contradiction.

(⇐=) Suppose that C admits a lexicographic representation via a lexicographic order l. It

is easy to see that C is a substitutable affirmative action rule that satisfies the monotonicity

axioms.
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Next, we show that C satisfies CTC. Let (S, τ,�) be a problem and s, s′ ∈ Cm(S, τ,�)

be such that s � s′. Let τ ′ be obtained from τ by changing the type of s, τ ′′ be obtained

from τ by changing the types of both s and s′. Suppose that Cm(S, τ ′,�)\Cm(S, τ,�) 6= ∅.
First note that in the lexicographic procedure at (S, τ,�), s must be chosen at a step, say

Step k, at which l(k) = 1 (i.e., the affirmative priority ordering �a is used), since otherwise

s would be chosen also at Step k at (S, τ ′,�) and thus we obtain the contradiction that

Cm(S, τ ′,�) = Cm(S, τ,�). Moreover, for any minority student m ∈ Cm(S, τ,�) such that

s � m, in the lexicographic procedure at (S, τ,�), m must also be chosen at a step, say

Step k′, at which l(k′) = 1 since otherwise, for each k′′ > k such that l(k′′) = 1, the same

minority students will be chosen at steps k′′ of the lexicographic procedures at (S, τ,�)

and at (S, τ ′,�), contradicting that Cm(S, τ ′,�) \ Cm(S, τ,�) 6= ∅.

Finally, since s � s′, in the lexicographic procedure at (S, τ,�), s′ is chosen at a step, say

Step k′, at which l(k′) = 1 and for any m ∈ Cm(S, τ,�) such that s′ � m, m is chosen at a

step, say Step k′′ > k′, at which l(k′′) = 1. But then either Cm(S, τ ′′,�) \Cm(S, τ ′,�) 6= ∅
or Cm(S, τ ′′,�) = Sm.

Appendix B Independence of Axioms

We show the independence of axioms for Theorem 2.

Example 2 (Violating only capacity-filling). Let S = {s1, s2, s3} and q = 2. Consider the

choice rule C such that for each problem (S, τ,�), C(S, τ,�) is a singleton consisting of

the highest priority student. It is easy to see that C satisfies all axioms in the statement

of Theorem 2 but capacity-filling.

Example 3 (Violating only neutrality). Let S = {s1, s2, s3} and q = 2. Consider the

choice rule C such that for each problem (S, τ,�), C(S, τ,�) is obtainable as follows: if

s1 ∈ S and τ(s1) = 1, then first choose s1 and then choose the highest priority students

until all seats are filled or no student is left; otherwise, choose the highest priority students

until all seats are filled or no student is left. It is easy to see that C satisfies all axioms in

the statement of Theorem 2 but neutrality.

Example 4 (Violating only priority compatibility). Let S = {s1, s2, s3} and q = 2.

Consider the choice rule C such that for each problem (S, τ,�), C(S, τ,�) is obtainable
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as follows: if the lowest priority student s ∈ S is a majority student, i.e., τ(s) = 0, then

first choose s and then choose the highest priority students until all seats are filled or no

student is left; otherwise, choose the highest priority students until all seats are filled or no

student is left. It is easy to see that C satisfies all axioms in the statement of Theorem 2

but priority compatibility.

Example 5 (Violating only substitutability). Let S = {s1, s2, s3, s4} and q = 2. Consider

the choice rule C such that for each problem (S, τ,�), C(S, τ,�) is obtainable as follows: if

S = S, then first choose the highest priority minority student and then choose the highest

priority students until all seats are filled or no student is left; otherwise, choose the highest

priority students until all seats are filled or no student is left. It is easy to see that C

satisfies all axioms in the statement of Theorem 2 but substitutability.

Example 6 (Violating only MTC ). Let S = {s1, s2, s3, s4, s5} and q = 4. Consider the

choice rule C that admits a reserve representation via the following R. For each ρ ∈ Q,

i. if ρ does not include any minority student, then R(ρ) = 1,

ii. if ρ includes one minority student, say m, then R(ρ) = 1 if rank(m, ρ) ≤ 3 and

R(ρ) = 0 otherwise,

iii. if ρ includes two minority students, then R(ρ) = 1,

iv. otherwise, i.e., if ρ includes three or more minority students, R(ρ) = 0.

It is easy to see that C is a substitutable affirmative action rule. To see that C satisfies

CTC, note that if changing the type of a chosen minority student is effective, then all

minority students must have been chosen. To see that C satisfies MPI, the critical case is

ρ includes two minority students and the bottom-ranked student m is a minority. Then,

by iii., R(ρ) = 1 and m is chosen. Now, suppose that ρ′ is obtained from ρ by improving

the priority rank of m. If the bottom-ranked student is again a minority, then, by iii.,

R(ρ′) = 1 and he is chosen; otherwise ρ′ includes three minority students and, by iv.,

chosen minorities remain to be chosen.

To see that C violates MTC, let (S, τ,�) be the problem such that S = S, τ(s1) =

τ(s3) = 0 and τ(s2) = τ(s4) = τ(s5) = 1, and s1 � · · · � s5. Note that s5 ∈ C(S, τ,�).

Let τ ′ be obtained from τ by changing the type of s2. Note that s5 /∈ C(S, τ ′,�).

Example 7 (Violating only MPI ). Let S = {s1, s2, s3, s4, s5} and q = 4. Consider the

choice rule C that admits a reserve representation via the following R. For each ρ ∈ Q,
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i. if ρ does not include any minority student or includes one minority student, then

R(ρ) = 1,

ii. if ρ includes two minority students, say m1 and m2 such that m1 ρ m2. Then R(ρ) = 1

if rank(m1, ρ) = 1, or rank(m1, ρ) = 3 and rank(m2, ρ) = 4; and R(ρ) = 0 otherwise,

iii. otherwise, i.e., if ρ includes three or more minority students, then R(ρ) = 0.

It is easy to see that C is a substitutable affirmative action rule. To see that C satisfies

CTC, note that if improving the priority of a chosen minority student or changing his type

is effective, then all minority students must have been chosen. To see that C satisfies MTC,

note that the reserve number never decreases in response to a type change of a chosen

minority student.

To see that it violates MPI, let (S, τ,�) be the problem such that S = S, τ(s1) = τ(s2) = 0

and τ(s3) = τ(s4) = 1, and s1 � · · · � s5. Let �′ be obtained from � by improving the

priority of s3 to the second rank. Note that s5 ∈ Cm(S, τ,�) \ Cm(S, τ,�′).
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