6. FEJEZET

6.1 Alfejezet

1.

		1.	vevő	2.vevő	3.vevő	
1.	raktár		15	35	25	40
2.	raktár		10	50	40	30
	Hiány		90	80	110	20
			30	30	30	-

2.

	1. vevő	2.vevő	3.vevő	Fiktív	
1. raktár	15	35	25	0	40
2. raktár	10	50	40	0	30
1.R extra	115	135	125	0	20
2.R extra	110	150	140	0	20
•	3.0	3.0	30	20	

3.

	Н1	Н2	нЗ	H4	Н5	Н6	Н7	
	7	8	9	10	11	12	0	
1NM	1.1	1.0	1.0	1.4	1 -	1.0	0	200
1TM	11	12	13	14	15	16	0	100
1111	М	7	8	9	10	11	0	100
2NM			_					200
	М	11	12	13	14	15	0	
2TM	2.6		П			1.0	0	100
3NM	М	М	7	8	9	10	0	200
JIM	М	М	11	12	13	14	0	200
3TM				12	10			100
	М	М	М	7	8	9	0	
4NM					- 10	1.0		200
4TM	М	М	М	11	12	13	0	100
4 IM	М	М	М	М	7	8	0	100
5NM					,			200
	М	М	М	М	11	12	0	
5TM							_	100
CNIM	М	М	М	М	М	7	0	200
6NM	М	М	М	М	М	11	0	200
6TM	1.1	141	I-1	I-I	I-I	11		100
	200	260	240	340	190	150	420	1

4a. Legyen a j-edik acélból az i-edik gyárban gyártott mennyiség x_{ij} tonna. Ekkor az 1-es gyár kínálata $40\,(60)\,/20=120$ tonna, a 2-es gyár kínálata $40\,(60)\,/16=150$ tonna, a 3-as gyáré pedig $40\,(60)\,/15=160$ tonna. A következő kiegyensúlyozott szállítási feladathoz jutunk:

	1. acél	2. acél	3. acél	Fiktív	
1. gyár	60	40	28	0	120
2. gyár	50	30	30	0	150
3. gyár	43	20	20	0	160
	100	100	100	130	

4b. Ebben az esetben nem értelmezhetjük egy gyár termelési kapacitását az előállított acélok tonnáinak összegeként. Ennek az az oka, hogy ugyanabban a gyárban a különböző típusú acélok egy tonnájának előállításához szükséges idők különbözőek. Például az 1-es gyár kínálati korlátját a

 $15x_{11} + 12x_{12} + 15x_{13} < 2400,$

egyenlőtlenség adná meg, ez azonban elt $\overline{\text{\'e}}$ r a szállítási feladat kínálati korlátjának alakjától.

$$(x_{11} + x_{12} + x_{13} < 1 - es gyár kínálata)$$

5.

1. hónap 2. hónap Fiktív

800 720 0

Daisy
710 750 0

Laroach

6.

	Eladói	Fizetési	Személyi	Fiktív	
1. helyszín	5	4	2	0	
					10000
2. helyszín	3	4	5	0	
					6000
	5000	5000	5000	1000	•

7. Ez egy maximumfeladat, tehát a cellákban található számok jelentése nem költség, hanem bevétel.

	Cliff	Blake	Alexis	
1. földterület	1,000	900	1,100	100,000
2. földterület	2,000	2,200	1,900	100,000
	0	0	0	40,000
	80,000	80,000	80,000	1

8. 1 hordó olaj szállításából a következő nyereség származik:

Az 1. mezőről Angliába: 6-3-1=2\$ Az 1. mezőről Japánba: 6.5-3-2=1.50\$ A 2. mezőről Angliába: 6-2-2=2\$

Mivel mindegyik szállítás nyereséges, ezért az optimális megoldásban 40 millió hordó olajat szállítunk Angliábaa, és 30 millió hordót Japánba. Bevezetünk egy fiktív keresleti pontot 20 millió hordónyi kereslettel, és ezáltal az alábbi kiegyensúlyozott szállítási feladathoz jutunk: (A keresleti és kínálati értékek millió hordóban vannak kifejezve)

	Anglia	Japán	Fiktív	
	2	1.5	0	
1. mező				40
	2	3.5	0	
2. mező				50
	40	30	20	_

10. Jelöljük x_{ij} -vel azt az időt, ahány órát az i-edik könyvvizsgáló a j-edik projekten dolgozik. Ekkor az alábbi maximumfeladatot kapjuk:

		1.Projekt	2.Projekt	3.Projekt	Fiktív	
		120	150	190	0	
1.	Kv					160
		140	130	120	0	
2.	Kv					160
		160	140	150	0	
3.	Kv					160
		130	140	160	50	-

11. Jelölje x_{ij} azt a mennyiséget, ahány tonna i-edik típusú papírmasszára van szükség a j-edik típusú papír készítéséhez. Ekkor az alábbi kiegyensúlyozott szállítási tábla tartozik a feladathoz

	(1)ÚÚP	(2)ÚNRP	(3)ÚRP	Fiktív	
	13	М	14	0	
(1)ÚPM					500
	12	9	14	0	
(2)NRPM					200
	M	14	12	0	
(3)RPM					300
	312.5	352.94	166.67	167.89	•

A költségeket az x_{ij} változók segítségével fejezzük ki. A különböző típusú újrafeldolgozott papírok iránti igényeket annak alapján kell meghatározni, hogy hány tonna inputmasszára van szükség a szóbanforgó újrafeldolgozott papír előállításához. Például újrafeldolgozható újságpapírmasszából 250 tonnára van szükség (1. keresleti pont). Az újrahasznosított újságpapírhoz szükséges massza 1 tonnájából (1-0.2) =0.8 tonna újrahasznosított újságpapír állítható elő. Ezért 250/0.8=312.5 tonna masszát kell feldolgozni ahhoz, hogy kielégítsük az igényt. Így az 1-es keresleti pont igénye 312.5. Hasonlóan a 2-es keresleti pont igénye 2=300/.85=352.94, a 3-as keresleti pont igénye pedig 150/.9=166.67.

12a. Helyettesítsük a nagy M-eket egy megfelelő késleltetési költséggel. Például, ha 3. havi gyártással elégítünk ki 1. havi igényt, akkor ennek a költsége 400 + 2(30) = 460\$.

12b. Illesszünk be egy új kínálati pontot ("elveszett üzlet" névvel), ahonnan bármelyik havi kínálati ponthoz történő szállítás egységnyi költsége 450\$. Az "elveszett üzlet" pont kapacitása legyen azonos teljes kereslettel. Iktassunk be még egy fiktív keresleti pontot, és egyensúlyozzuk ki ezzel a feladatot.

12c. 1. havi gyártás 4. havi kereslet kielégítésére történő felhasználásának költsége M.

12d. Mindegyik hónaphoz iktassuk be az i-edik havi alvállalkozói kínálati pontot. Ennek a kapacitása legyen 10, a költség pedig 440\$-ral nagyobb, mint a megfelelő i-edik havi kínálati ponthoz tartozó eredeti költség. Ezután módosítsuk a fiktív keresleti pont igényét úgy, hogy kiegyensúlyozott feladatot kapjunk.

6.2 Alfejezet

1. Az északnyugati sarok módszerrel az 1. feladathoz az alábbi lehetséges bázismegoldást kapjuk:

30	10		40
	20	10	30
		20	20
 30	30	30	

Az északnyugati sarok módszerrel a 2. feladathoz az alábbi lehetséges bázismegoldást kapjuk:

	1.vevő	2.vevő	3.vevő	Fiktív	
	15	35	25	0	40
1.raktár	30	10			
	10	50	40	0	30
2.raktár		20	10		
	115	135	125	0	20
1.r.EXTRA			20	0	
	110	150	140	0	20
2.r.EXTRA				20	
	30	30	30	20	

Az északnyugati sarok módszerrel a 3. feladathoz az alábbi lehetséges bázismegoldást kapjuk:

	Н1	Н2	нЗ	Н4	Н5	Н6	Fiktív	
1NM	200							200
1TM	0	100						100
2NM		160	40					200
2TM			100					100
3NM			100	100				200
3TM				100				100
4NM				140	60			200
4TM					100			100

					5			
5NM					30	150	20	200
5TM							100	100
6NM							200	200
6TM							100	100
	200	260	240	340	190	150	420	_

2. A minimális költség módszerrel a 6.1. alfejezet 4. feladatához az alábbi lehetséges bázismegoldást kapjuk.

60	40	28	0	
			120	Χ
50	30	30	0	
				150
43	20	20	0	
				160
100	100	100	10	

60	40	28	0	
			120	Χ
50	30	30	0	
			10	140
43	20	20	0	
				160
100	100	100	X	

60	40	28		0	
			120		Χ
50	30	30		0	
			10		140
43	20	20		0	
		100			60
100	100	X		Χ	

60		40		28		0	
					120		Χ
50		30		30		0	
					10		140
43		20		20		0	Χ
	60		100				
100		40		Χ		Χ	
	50	50 43 60	50 30 43 20 60	50 30 43 20 60 100	50 30 30 43 20 20 60 100	50 30 30 43 20 20 60 100	50 30 30 0 10 43 20 100 0 100 0

60		40		28		0	
					120		Χ
50		30		30		0	
	40				10		100
43		20		20		0	Χ
	60		100				
100		Х		Х		Χ	.'

	60		40		28		0	
						120		Х
	50		30		30		0	
100		40				10		Х
	43		20		20		0	Χ
		60		100				
	Χ		Х		Χ		Χ	

A (maximumfeladatra alkalmazott) minimális költség módszerrel a 6.1. alfejezet 7. feladatához a következő lehetséges bázismegoldást kapjuk:

1000	900	1100	
1000	900		100,000
2000	2200	1900	100,000
0	0	0	
			40,000
80,000	80,000	80,000	
1000	900	1100	
			100,000
2000	2200	1900	00 000
0	80,000	0	20,000
	0	0	40,000
80,000	X	80,000	10,000
			l
1000	900	1100	100 000
2000	2200	1900	100,000
20,000	80,000	1300	X
0	0	0	
			40,000
60,000	X	80,000	
1000	900	1100	
		80,000	20,000
2000	2200	1900	
20,000	80,000	_	X
0	0	0	40,000
60,000	X	X	40,000
33,333			
	T		
1000	900	1100	
20,000	2200	1900	X
2000	2200 80,000	1900	X
0	0	0	4.4
			40,000
40,000	X	X	

100	0 (900	1100	
20,000			80,000	Χ
200	0 (2200	1900	
20,000		80,000		Χ
	0	0	0	
40,000				Х
	Χ	X	X	-

A minimális költség módszerrel a 8. feladathoz (ami ismét egy maximumfeladat) az alábbi lehetséges bázismegoldást kapjuk:

2	1.5	0	
			40
2	3.5	0	
			50
40	30	20	
2	1.5	0	
			40
2	3.5	0	
	30		20

	2		1.5		0	
40						Χ
	2		3.5		0	
		30				20
	0		X	2	20	
	2		1.5		0	
40						Χ
	2		3.5		0	
0		30				20
	Χ		Х		20	,

	2		1.5		0	
40						Х
	2		3.5		0	
0		30		20		Х
	Χ		X		X	

3. A Vogel-módszerrel a 6.1. alfejezet 5. feladatához a következő lehetséges bázismegoldást kapjuk:

	800	720	0	5	Sor bünt. 720*
	710	750	0		
				5	710
	3	4	3		
Oszl.					
Bünt.	90	30	0		

	800	720	3	2	Sor bünt. 80
	710	750	0	5	40
Oszl.	3	4	Х	•	
Bünt.	90*	30	_		
	800	720	3	2	Sor bünt.
	710	750	0	2	_
Oszl.	X	4	X	•	
Bünt.	-	30*	-		
	800	720	0	2	Sor bünt.
	710	750	0	2	_
Oszl.	Х	2	X	!	
Bünt.	-	-	-		
		,	,	•	
	800	720	0	2	Sor bünt.
	710 3	750 2	0	2	_
0071	X	X	X	I	
Oszl. Bünt.	_	-	-		

A Vogel-módszerrel a 6.1. alfejezet 6. feladatához a következő lehetséges bázismegoldást kapjuk (A kapacitások és igények ezer csekkben, a szállítási költségek pedig ezer centben vannak kifejezve).

	5	4	2	0	10	Sc	or Bünt. 2
	3	4	5	0			
					6		3
	5	5	5	1			
Oszl. Bünt.							
Bünt.	2	0	3*	0			

	5	4	5	0	5	Sor Bünt. 4*
	3	4	5	0	J	4
					6	3
Oszl.	5	5	X	1		
Bünt.	2	0	_	0		
	5	4	2	0		Sor Bünt.
			5	1	4	1
	3	4	5	0	6	1
	5	5	X	X	· ·	_
Oszl.	0.1	2				
Bünt.	2*	0	_	_		
		4			1	G D
	5	4	5	0	4	Sor Bünt.
	3	4	5	0		
5	3.7		37	3.7	1	-
Oszl.	Х	5	X	Χ		
Bünt.	-	0	-	-		
	5	4	2	0		Sor Bünt.
		4	5	1	X	-
5	3	4	5	0	1	_
	X	1	X	X	1	
Oszl.						
Bünt.	_	_	-	_		
	5	4	2	0		Sor Bünt.
	3	4	5 5	1 0	X	_
5		1			X	_
	Х	X	X	Х	•	
Oszl. Bünt.	-	_	-	-		

4. Mindegyik sorban definiáljuk a sorhoz tartozó büntetést, ami = (a sorban szereplő legnagyobb célfüggvény-együttható) - (a sorban a második legnagyobb célfüggvény-együttható). Az oszlopokhoz tartozó büntetéseket hasonló módon értelmezzük. A kihúzott sorokban és oszlopokban lévő költségeket figyelmen kívűl hagyva azt a változót léptetjük be a bázisba, amelyiknek a sorához vagy az oszlopához a legnagyobb büntetés tartozik.

6.3 Alfejezet

1. Kezdjük a 6.2. alfejezetben kapott lehetséges bázismegoldással

	V			15			35		2	25	
u											
				15			35		2	25	
0		30			10						40
				10			50		4	10	
15					20			10			30
				90			80		11	0	
85								20			20
			30			30			30		II

Mivel c_{32} =40 , az x_{32} változót léptetjük be a bázisba. Ez és néhány bázisváltozó a (3, 2) - (2, 2) - (2, 3) - (3, 3) hurkot határozza meg. x_{33} kilép a bázisból, s így a következő lbm adódik

	V		15		35		25	
u								
			15		35		25	
0		30		10				40
			10		50		40	
15				0		30		30
			90		80		110	
45				20				20
	•	3	30		30	3	30	•

Mivel $c_{21}=20$, az c_{21} változó lép be a bázisba. c_{21} és a bázisváltozók a $c_{21}-c_{2$

	V			15			35		45	
u										_
				15			35		25	
0		30			10					40
				10			50		40	
-5		0						30		30
				90			80		110	
45					20					20
	•		30			30			30	_

Most $\overline{c_{13}}$ =20 , ezért az x_{13} változót léptetjük be. Ehhez az (1, 3) - (2, 3) - (2, 1) - (1, 1) hurok tartozik. x_{11} kilépése után a következő lbm adódik:

	V		-5		35		45	
u								
			15		35		25	
0				10		30		40
			10		50		40	
15		30				0		30
			90		80		110	

Ez egy optimális megoldás. Tehát 10 egységet kell szállítani az 1-es raktárból a 2-es vevőhöz, 30 egységet az 1-es raktárból a 3-as vevőhöz, és 30 egységet a 2-es raktárból az 1-es vevőhöz. A 2-es vevő fennmaradó 20 egységnyi igénye kielégítetlen marad.

2.

	1.vevő	2.vevő	3.vevő	Fiktív	
	15	35	25	0	
1.raktár	30	10			40
	10	50	40	0	
2.raktár		20	10		30
	115	135	125	0	
1.r. extra			20	0	20
	110	150	140	0	
2.r. extra				20	20
	30	30	30	20	

 x_{21} belépése és x_{22} kilépése után az eredmény

	1.vevő	2.vevő	3.vevő	Fiktív	
	15	35	25	0	
1.raktár	10	30			40
	10	50	40	0	
2.raktár	20		10		30
	115	135	125	0	
1.r. extra			20	0	20
	110	150	140	0	
2.r. extra				20	20
	30	30	30	20	

 x_{13} belépésekor akár x_{11} -et, akár x_{23} -t kiléptethetjük. Az x_{23} változót választva a következő táblát kapjuk

	1.	vevő	2.	vevő	3.	vevő	Fi	lktív	
		15		35		25		0	
1.raktár	0		30		10				40
		10		50		40		0	
2.raktár	30								30
		115		135		125		0	
1.r. extra					20		0		20
		110		150		140		0	
									•

			12		
2.r. extra				20	20
	30	30	30	20	

x₄₁ belépésével a következő optimális táblát kapjuk:

	1.vevő	2.vevő	3.vevő	Fiktív	
	15	35	25	0	
1.raktár		30	10		40
	10	50	40	0	
2.raktár	30				30
	115	135	125	0	
1.r. extra			20	0	20
	110	150	140	0	
2.r. extra	0			20	20
	30	30	30	20	

4. A feladatot a hálózati szimplex módszerrel oldjuk meg.

7	7	50	30	30	0	
u		1.acél	2.acél	3.acél	Fiktív	
		60	40	28	0	
0	1. gyár				120	120
		50	30	30	0	
0	2. gyár	100	40		10	150
		43	20	20	0	
-10	3. gyár		60	100		160
		100	100	100	130	="

Mivel \overline{c}_{13} =2 az egyetlen pozitív \overline{c}_{ij} , beléptetjük az x_{13} változót. Ehhez az (1,3)-(1-4)-(2,4)-(2,2)-(3,2)-(3,3) hurok tartozik. Az x_{22} változó kilépése után az eredmény

	V		50	28	28	0	
u			1.acél	2.acél	3.acél	Fiktív	
			60	40	28	0	
0	1	. gyár			40	80	120
			50	30	30	0	
0	2	. gyár	100			50	150
			43	20	20	0	
-8	3	. gyár		100	60		160
			100	100	100	130	

Ez egyí optimális megoldás. Tehát a 2-es gyár 100 tonna 1-es acélt termel, a 3-as gyár 100 tonna 2-es acélt és 60 tonna 3-as acélt állít elő. Az 1-es gyár 40 tonna 3-as acélt készít.

5.

	V		680	7	720	0		
u		1.	hónap	2.h	nónap	Fikt	ív	
			800		720		0	5
0	Daisy			2		3		
			710		750		0	5
30	Laroach	3		2				
			3		4	3		

Mivel \overline{c}_{23} =30 , az x_{23} változó lép be a bázisba. Ehhez a (2,3)-(2,2)-(1,2)-(1,3) hurok tartozik. x_{22} kilépése után az eredmény

	V	71	.0	7	20	0		
u		1.hć	nap	2.h	ónap	Fikt	iv	
			800		720		0	5
0	Daisy			4		1		
			710		750		0	5
0	Laroach	3				2		
		3	}		4	3		

Ez egy optimális táblázat. Tehát a 2. hónapban 4 gallont kell vásárolni Daisy-től, az 1. hónapban pedig 3 gallont vásárolunk Laroache-tól.

6.

	V	3	4	2	0	
u		Eladói	Fizetési	Személyi	Fiktív	
		5	4	2	0	
0	1. hely		4	5	1	10
		3	4	5	0	
0	2. hely	5	1			6
		5	5	5	1	•

Ez egy optimális megoldás. Tehát mindegyik napon 4,000 fizetési és 5,000 személyi csekket kell feldolgozni az 1. helyszínen. Ugyanakkor a 2. helyszínen naponta 5,000 eladói és 1,000 fizetési csekket kell feldolgozni.

7.

,	V	1	,000	1,200	1,100	
u		С	liff	Blake	Alexis	
			1,000	900	1,100	
0	1. hely	20			80	100
			2,000	2,200	1,900	
1,000	2. hely	20		80		100
			0	0	0	
-1,000	Fiktív	40				40
			80	80	80	-

Mivel valamennyi $c_{ij} \ge 0$, ez a megoldás optimális (ne felejtsük el, hogy ez egy maximumfeladat). Tehát Cliff 20,000 holdat kap mindkét helyszínen, Blake 80,000 holdat a 2-es helyszínen, Alexis pedig 80,000 holdat az 1-es helyszínen.

8.

	V				2	3	.5	0		
u				Eng	land	Ja	pan	Fikt	tív	
					2		1.5		0	
0		1.	mező	40						40
					2		3.5		0	
0		2.	mező	0		30		20		50
					40		30	20)	

Ez egy optimális megoldás. Tehát 40 millió hordót szállítunk 1- es mezőről Angliába, és 30 millió hordót a 2-es mezőről Japánba.

6.4 Alfejezet

1. x_{14} nem bázisváltozó az optimális megoldásban. Ha c_{14} értékét (9 + Δ)-ra módosítjuk, akkor

$$\overline{c}_{14} = 0 + 2 - (9 + \Delta) = -7 - \Delta$$
.

Tehát akkor marad optimális az aktuális bázis, ha -7 - Δ \leq 0 vagy $\Delta \geq$ -7. Ezért az aktuális bázis optimalitásának feltétele c_{14} \geq 9 - 7 = 2.

2. x_{34} bázisváltozó az optimális megoldásban. Ha c_{34} értékét (5 + Δ)-ra változtatjuk, akkor

 $u_1 = 0$, $u_2 = 3$, $u_3 = 6$, $v_1 = 6$, $v_2 = 6$, $v_3 = 10$, $v_4 = 2 + \Delta$. Csak x_{14} és x_{24} kiértékelése módosul.

 $\overline{c}_{14}=0+2+\Delta-9=\Delta-7$, $\overline{c}_{24}=3+2+\Delta-7=\Delta-2$. Tehát optimális marad az aktuális bázis, ha $\Delta \le 2$ vagy $c_{34} \le 5+2$.

- 3. x_{23} bázisváltozó az optimális táblázatban. Ezért az új optimális megoldásban nem változnak a változók értékei, kivéve az x_{23} változót, ami 3-mal nő, tehát $x_{23}=5+3=8$. z értéke 3(13)-mal nő, tehát az új optimális célfüggvényérték 1020 + 39 = 1059.
- 4. x_{33} nem bázisváltozó az optimális megoldásban. Az x_{33} változó és a bázisváltozók a (3-3)-(3,2)-(1,2)-(1,3) hurkot határozzák meg. Tehát az új optimális megoldást úgy kapjuk, hogy 2-vvel csökkentjük x_{13} és x_{32} értékét, ugyanakkor x_{12} értékét pedig 2-vel növeljük. Így a következő optimális megoldást kapjuk: x_{12} = 12, x_{13} = 23, x_{21} = 45, x_{23} = 5, x_{32} = 8, x_{34} = 30, (a többi változó értéke 0). z = 1020 2 u_3 2 v_3 = 1020 2(3) 2(10) = 994.
- 5a. A szállítási szimplex módszert alkalmazva a következő optimális táblát kapjuk (z = 950)

1. OPTIMÁLIS MEGOLDÁS

	55		65		80		0	
10		0				10		20
	10		15		25		0	
		10		10				20
	10	1	.0	1	. 0	10		

Mivel ez a megoldás degenerált, bevonhatjuk a bázisba az x_{13} változót, s így egy másik optimális megoldást kapunk:

2. OPTIMÁLIS MEGOLDÁS

	55		65		80		0	
10				0		10		20
	10		15		25		0	
		10		10				20
	10	1	.0	1	.0	10		,

Ha a 2-es vevő igényét Δ -val növeljük, akkor az 1. optimális megoldás így alakul:

	55	6.	5	80	0	
10		Δ			10-△	20
	10	15	5	25	0	
		10	10			20
	10	10+△		10	10-△	_

 Δ = 1 esetén x_{11} = 10, x_{12} =1, x_{14} = 9, x_{22} = x_{23} = 10, z = 1015.

Ha a 2-es vevő igényét Δ -val növeljük, akkor a 2. optimális megoldásból

		55		65		80	0	
10					Δ		10-△	20
		10		15		25	0	
			10+△		10-△			20
	10		10+	Δ	10		10-△	_

lesz. $\Delta>0$ esetén ez a táblázat már nem optimális, (x₁₂ -t kell beléptetni a bázisba!). Ennek az az oka, hogy a feladat már nem degenerált, és x₁₂ beléptetése csökkentené a célfüggvény értékét.

6.5 Alfejezet

1. M költséggel látjuk el a tiltott hozzárendeléseket, és egy fiktív munkával (5. munka) kiegyensúlyozzuk a feladatot. Bármelyik személynek a fiktív munkához történő hozzárendelése 0 költséggel jár.

				Munka			
		1	2	3	4	5	Sormin.
	1	22	18	30	18	0	0
	2	18	М	27	22	0	0
Személy	3	26	20	28	28	0	0
	4	16	22	М	14	0	0
	5	21	М	25	28	0	0
Oszlopmin.		16	18	25	14	0	•

Mivel mindegyik sorminimum 0, kivonjuk az oszlopminimumokat. Így a következő mátrixot kapjuk.

				Munka		
		1	2	3	4	5
	1	6	0	5	4	0
	2	2	М	2	8	0
Személy	3	10	2	3	14	0
	4	0	4	М	0	0
	5	5	М	0	14	0

Négy vonalra (pl. 1. sor, 4.sor, 3. oszlop, 5. oszlop)van szükség valamennyi 0 lefedéséhez. A le nem fedett elemek minimuma 2, ezért 2-vel csökkentjük a le nem fedett költségeket, és 2-vel növeljük a kétszer lefedett költségeket. Az eredmény

	1	2	Munka 3	4	5	
1	6	0	7	4	2	
2	0	М	2	6	0	

		17				
		8	0	3	12	0
Személy	3					
		0	4	M	0	2
	4					
		3	M	0	12	0
	5					

Most már 5 vonalra van szükség valamennyi 0 lefedéséhez, tehát optimális megoldáshoz jutottunk: $x_{12}=1$, $x_{21}=1$, $x_{35}=1$, $x_{44}=1$, $x_{53}=1$. A 3. személy nem kapott munkát, és valamennyi munka elvégzésének össz-ideje 18+18+14+25=75 időegység.

2. A magyar módszer alkalmazásával

	Gyor	Mell	Pillangó	Hát
	S			
	3	3	0	2
Hall				
	0	6	1	1
Spitz				
	0	3	4	6
Montgomery				
	3	1	2	0
Jastremski				
Oszlopmin.	0	1	0	0

adódik. A redukált költség mátrix

	Gyor	Mell	Pillangó	Hát
	S			
	$^{\circ}$	2	0	2
Hall				
	0	5	1	1
Spitz				
	0	2	4	6
Montgomery				
	3	0	2	0
Jastremski				

alakú. Mindössze három vonalra van szükség valamennyi 0 lefedéséhez (pl. 1. sor, 4. sor és 1. oszlop). A legkisebb le nem fedett elem 1, ezért 1-gyel csökkentjük a le nem fedett költségeket, és 1-gyel növeljük a kétszeresen lefedett költségeket. Így az alábbi mátrix adódik:

	Gyor s	Mell	Pillangó	Hát
	4	2	0	2
Hall				
	0	4	0	0
Spitz				
	0	1	3	5
Montgomery				
	4	0	2	0

Mivel 4 vonalra van szükség valamennyi 0 lefedéséhez, ezért egy optimális megoldáshoz jutottunk: $x_{13}=1$, $x_{24}=1$, $x_{31}=1$, és $x_{42}=1$. Tehát Hall kapja a pillangóúszást, Spitz-é a hát, Montgomery-é a gyorsúszás, Jastremski pedig mellúszásban indul.

3a.
$$\max z = 7x_{11} + 5x_{12} + 8x_{13} + 2x_{14} + \dots + 5x_{41} + 5x_{42} + 6x_{43} + 7x_{44}$$
 f.h $x_{11} + x_{12} + x_{13} + x_{14} \le 1$ (TS) $x_{21} + x_{22} + x_{23} + x_{24} \le 1$ (BR) $x_{31} + x_{32} + x_{33} + x_{34} \le 1$ (TG) $x_{41} + x_{42} + x_{43} + x_{44} \le 1$ (JT) $x_{11} + x_{21} + x_{31} + x_{41} \le 1$ (ONJ) $x_{12} + x_{22} + x_{32} + x_{42} \le 1$ (LA) $x_{13} + x_{23} + x_{33} + x_{43} \le 1$ (DP) $x_{14} + x_{24} + x_{34} + x_{44} \le 1$ (GF) $x_{17} \ge 0$

Ezek a korlátozó feltételek azt biztosítjál, hogy egyik személy se töltsön saját idejének 100%-ánál többet az ellenkező nemű személyekkel. Mivel bármelyik ellenkező nemű személy esetén az eggyütlét örömet okoz, a társadalomnak az az érdeke, hogy mindegyik személy idejének 100%-át használja ki. Ezért feltehetjük, hogy az optimális megoldásban mind a 8 egyenlőtlenség egyenlőségként fog teljesülni.

3b. Mivel tudjuk, hogy mindegyik feltétel egyenlőségként fog teljesülni, egy kiegyensúlyozott szállítási feladatunk van (tulajdonképpen egy kiegyensúlyozott hozzárendelési feladat), és azt is tudjuk, hogy valamennyi változó értéke 0 vagy 1. Ezért az optimális megoldásban pontosan $4 \times_{ij}$ változó értéke lesz 1, a többié pedig 0. Egy ilyen megoldás szerint mindegyik személy egy ellenkező nemű személlyel tölti teljes idejét. Tehát a mi modellünkben a 'házasság' az optimális.

3c. A boldogság mértékét kifejező számokat -l-gyel szorozva minimumfeladathoz jutunk, amit a magyar módszerrel oldunk meg

		ONJ	LA	DP	GF	Sormin
	-7	- 5	-8	-2	-	-8
TS						
	-7	-8	-9	-4	-	- 9
BR						
	-3	- 5	-7	-9	-	- 9
TG						
	- 5	- 5	-6	-7	-	-7
JT						

A sorminimumok kivonása után az alábbi mátrix adódik

	ONJ	LA	DP	GF
	1	3	0	6
TS				

					エン
BR	2	1	0	5	
TG	6	4	2	0	
JT	2	2	1	0	
Oszlopmin.	1	1	0	0	

Az oszlopminimumokat kivonva az aktuális oszlop minden eleméből

	ONJ	LA	DP	GF
	0	2	0	6
TS				
	1	0	0	5
BR				
	5	3	2	0
TG				
	1	1	1	0
JT				

adódik. Három vonal (1. sor, 2. sor és 4. oszlop) elegendő valamennyi 0 lefedéséhez. A legkisebb le nem fedett költség 1, tehát 1-gyel növeljük a kétszer lefedett költségeket, és 1-gyel csökkentjük a le nem fedett költségeket. Az alábbi mátrixhoz jutunk:

	ONJ	LA	DP	GF
	0	2	0	7
TS				
	1	0	0	6
BR				
	4	2	1	0
TG				
	0	0	0	0
JT				

Most 4 vonalra van szükség valamennyi 0 lefedéséhez. Optimális megoldáshoz jutottunk: z=30, x34=x42=x11=x23=1. Tehát Tom párja Olívia, Burt párja Dolly, Tony-é Genie, és John párja Loni.

4. Az alábbi táblázat adja a költségmátrixot és (*-gal jelölve) az optimális hozzárendelést:

				Munka			
Személy	1	2	3	4	Fiktív		
1	50	46	42	40*	0		
2	51*	48	44	1000	0		
2'	51	48	44*	1000	0		
3	1000	47	45	45	0		
3 '	1000	47	45	45	0		
Megjegyz	zés: az	1000	értékű	költség	kizárja	a	tiltott

hozzárendelést. Az összköltség értéke 182.

5. A kínálati pontok kapacitásainak minden egységéhez egy kínálati pontot készítünk 1 kapacitással. Ugyanakkor a keresleti pontok igényeinek minden egységéhez egy keresleti pontot készítünk, aminek 1 egység az igénye. Tehát a következő költség mátrixot használjuk:

	K1:1	K2:1	K2:2	K2:3	K2:4	
P1:1	3	1	1	1	1	1
P1:2	3	1	1	1	1	1
P2:1	2	3	3	3	3	1
P2:2	2	3	3	3	3	1
P2:3	2	3	3	3	3	1
	1	1	1	1	1	_

Ez a hozzárendelési feladat ekvivalens az eredeti szállítási feladattal.

6a.

	1.Út	2.Út	3.Út	4.Út	Sormin.
	4	5	M	M	
1.Vállalat					4
	M	4	М	4	
2.Vállalat					4
	3	М	2	М	
3.Vállalat					2
	M	М	4	5	
4.Vállalat					4

(A költségek ezer egységben vannak kifejezve). A sorminimumok kivonása után

0	1	М	М
М	0	М	0
1	М	0	М
М	М	0	1
\cap	\cap	0	0

Oszlopmin.

Adódik. Tehát a redukált költség mátrix a következő

0	1	М	М
М	0	М	0
1	М	0	М
М	М	0	1

Az 1. sor, a 2. sor és a 3. oszlop lefedi valamennyi 0-t. Adjunk 1-et a kétszeresen lefedett költségekhez, és vonjunk ki 1-es a le nem fedett költségekből. Ekkor a következő mátrixot kapjuk

0	1	М	М
М	0	М	0
0	М	0	М
М	М	0	0

Mivel 4 vonalra van szükség valamennyi 0 lefedéséhez, optimális megoldáshoz érkeztünk: $x_{11}=x_{22}=x_{33}=x_{44}=1$, az összköltség pedig 15,000\$.

6b.

	1.Út	2.Út	3.Út	4.Ú t	D1	D2	D3	D4
	4	5	M	М	0	0	0	0
Vállalat 1								
	4	5	M	M	0	0	0	0
Vállalat 1'								
	M	4	M	4	0	0	0	0
Vállalat 2								
	M	4	М	4	0	0	0	0
Vállalat 2 '								
	3	M	2	M	0	0	0	0
Vállalat 3								
	3	M	2	М	0	0	0	0
Vállalat 3'								
	M	M	4	5	0	0	0	0
Vállalat 4								
	M	M	4	5	0	0	0	0
Vállalat 4'								
Oszlopmin.	3	4	2	4	0	0	0	0

D1-D4 fiktív keresleti pontok. Mivel mindegyik sorminimum értéke 0, az alábbi redukált költségmátrix adódik.

1	1	М	M	0	0	0	0
1	1	M	M	0	0	0	0
M	0	M	0	0	0	0	0
M	0	M	0	0	0	0	0
0	M	0	M	0	0	0	0
0	M	0	М	0	0	0	0
M	M	2	1	0	0	0	0
M	M	2	1	0	0	0	0

8 vonalra van szükség valamennyi 0 lefedéséhez. Ezért optimális megoldáshoz ($x_{3'3}=x_{22}=x_{31}=x_{24}=1$) érkeztünk. Az összköltség értéke 13,000\$. Tehát a 3-as vállalat kapja az 1-es és 3-as útvonalat, a 2-es vállalat pedig a 2-es és 4-es útvonalakat.

7. Ha egy cellának a sora és az oszlopa sem szerepel a lefedő vonalak között, akkor a 3. lépés (-k)-t add a cella költségéhez. Ugyanakkor a feladatban leírt műveletek a 0 + (-k) = -k értéket adják a cella költségéhez.

Ha egy cellának a sora nem szerepel a lefedő vonalak

között, de az oszlopa igen, akkor a 3. lépés 0-t ad a cella költségéhez. Ugyanakkor a feladatban leírt műveletek a 0 + 0 = 0 értéket adják a cella költségéhez.

Ha egy cellának a sora a lefedő vonalak között szerepel, az oszlopa viszont nem, akkor a 3. lépés 0-t ad a cella költségéhez. Ugyanakkor a feladatban leírt műveletek a k-k=0 értéket adják a cella költségéhez.

Végül, ha egy cellának a sora és az oszlopa is szerepel a lefedő vonalak között, akkor a 3. lépés k-val növeli a cella költségét. Ugyanakkor a feladatban leírt műveletek a k + 0 = k értéket adják a cella költségéhez.

Tehát mind a négy esetben a 3. lépés a feladatban szereplő 2 művelet egymásutáni végrehajtásával ekvivalens.

8. Nem igaz. Tekintsük a következő hozzárendelési feladatot:

2	3	3
3	80	80
3	90	3

Ennek az optimális megoldása $x_{12}=x_{33}=x_{21}=1$, z=9. Vegyük észre, hogy c_{11} a legkisebb költség mind az első sorban, mind pedig az első oszlopban. Ennek ellenére, az optimális megoldásban $x_{11}=0$.

6.6 Alfejezet

1		
- 1	\sim	
4	. a	-

ıa.							
	LA	DET	ATL	HOUS	TAMPA	FIKTÍV	
	0	140	100	90	225	0	5100
LA							
	145	0	111	110	119	0	6900
DET							
	105	115	0	113	78	0	4000
ATL							
	89	109	121	0	М	0	4000
HOUS							
	210	117	82	М	0	0	4000
TAMPA							
	4000	4000	4000	6400	5500	100	•

1b.

	LA	DET	ATL	HOUS	TAMPA	FIKTÍV	
•	0	М	100	90	225	0	5100
LA							
	М	0	111	110	119	0	6900
DET							
	105	115	0	113	78	0	4000
ATL							
	89	109	121	0	М	0	4000
HOUS							
	210	117	82	М	0	0	4000
TAMPA							
	4000	4000	4000	6400	5500	100	

1c.

LA	DET	ATL	HOUS	TAMPA	FIKTÍV	
0	140	100	90	225	0	5100

TAMPA

2. (A kapacitások és igények 1000\$-ban vannak kifejezve) Az összkapacités és az összes igény különbsége 50, ezért a fiktív keresleti pont igénye 50. Az alábbi kiegyensúlyozott szállítási táblát kapjuk:

	Mobile	Galv.	NY	LA	Fiktív	Kapacitás
	10	13	25	28	0	
1. Kút						150
	15	12	26	25	0	
2. Kút						200
	0	6	16	17	0	
Mobile						0+350=350
	6	0	14	16	0	
Galv.						0+350=350
	M	M	0	15	0	
NY						0+350=350
	M	M	15	0	0	
LA						0+350
Igény	350	350	140	160	50	
			+350	+350		

3. Közvetlenül nem tudunk olajat szállítani a kutakból LA-be vagy NY-ba. Ezt úgy érjük el, hogy ezeknek a szállításoknak a költségét M-re állítjuk. A finomítási költségeket beépítve a következő táblához jutunk:

	Mobile	Alv.	NY	LA	Fiktív	Kapacitás
	22	23	М	М	0	
1. Kút						150
	27	22	M	M	0	
2. Kút						200
	0	6	16	17	0	
Mobile						0+350=350
	6	0	14	16	0	
Galv.						0+350=350
	M	M	0	15	0	
NY						0+350=350
	M	M	15	0	0	
LA						0+350
Igény	350	350	140	160	50	•
			+350	+350		

4. Legyen Galveston kapacitása és Galveston igénye egyaránt 150, ugyanakkor Mobile kapacitása és Mobile igénye egyaránt 180. Ekkor az alábbi kiegyensúlyozott szállítási feladathoz jutunk:

	Mobile	Alv.	NY	LA	Fiktív	Kapacitás
	22	23	M	М	0	
1. Kút						150
	27	22	M	M	0	
2. Kút						200
	0	6	16	17	0	
Mobile						180
	6	0	14	16	0	
Galv.						150
	M	M	0	15	0	
NY						0+350=350
	M	M	15	0	0	
LA						0+350
Igény	350	350	140	160	50	
			+350	+350		

5. Az optimális tábla a következő:

	DENV	NY	LA	CHIC	PHIL	Fiktív	
	1253	637	10000	10000	10000	0	
DET	20	130					150
	1398	841	10000	10000	10000	0	
ATL	60					40	100
	0	10000	1059	996	1691	0	
DENV	170		80				250
	10000	0	2786	802	100	0	
NY		120		70	60		250
	250	250	80	70	60	40	

6a.

			Hónap			
1	2	3	4	5	6	Fiktív
0	0	0	0	0	0	0

80

160

140

120

6b. (a költségek centben vannak megadva)

50

200

100

	C1	C2	С3	C4	C5	С6	Н1	Н2	нЗ	Н4	Н5	Н6	Fikt	
KT1	21	19	17	13	9	5	М	М	М	М	М	М	0	200
KT2	50	50	50	33	0	0	М	М	М	М	М	М	0	100
KT3	1	1	1	1.3	1	0	М	М	М	М	М	М	0	400
C1	0	0	М	М	М	М	0	М	М	М	М	М	0	100
	M	0	0	М	M	М	5	0	M	М	М	M	0	0
C2	М	М	0	0	М	М	10	5	0	М	М	0	0	850
C3	М	М	М	0	0	М	15	10	5	0	М	М	0	850
C4	М	М	М	М	0	0	20	15	10	5	0	М	0	850
C5	М	М	М	М	М	0	25	20	15	10	5	0	0	850
C6	850	850	850	850	850	850	200	100	50	80	160	140	120	850

Egy Ct-ből C(t+1)-be történő szállítás azt jelenti, hogy egy a t-edik hónap elején meglévő pénzösszeg még a (t+1)-edik hónap elején is rendelkezésre áll. Egy Kti-ből Ct-be történő szállítás azt jelenti, hogy az i-edik kötvényt a t-edik hónap elején eladják. Egy Ct-ből Ht'-be történő szállítás azt az összeget jelenti, melyet a t-edik havi készpénzből a t'hónapban jelentkező igény kielégítésére költöttek. Megjegyezzük, hogy bármelyik csúcson összesen legfeljebb 850\$ pénzösszeg szállítható keresztül.

6. Fejezet, Áttekintő feladatok

1. Az észak-nyugati sarok módszerrel az alábbi lbm-t kapjuk. Megemlítjük, hogy a fiktív kínálati pontból bármelyik vevőhöz történő szállítás kielégítetlen vevői igényt jelent:

					26		
	1.	Vevő	2.	Vevő	3.	Vevő	
		75		60		6	9
Gyár 1	50						50
		79		73		6	8
Gyár 2	30		70				100
		85		76		7	0
Gyár 3			20		30		50
		0		0			0
Fiktív					70		70
		80		90		100	

 x_{13} belép a bázisba.

	1.	Vevő	2.	Vevő	3.	Vevő	
		75		60		69	
Gyár 1	20				30		50
		79		73		68	
Gyár 2	60		40				100
		85		76		70	
Gyár 3			50				50
		0		0		0	
Fiktív					70		70
		80		90		100	

Most x_{31} lép be a bázisba.

	1.	Vevő	2.	Vevő	3.	Vevő	
		75		60		69	
Gyár 1	20				30		50
		79		73		68	
Gyár 2	10		90				100
		85		76		70	
Gyár 3	50						50
		0		0		0	
Fiktív					70		70
		80		90		100	

Ez egy optimális tábla.

2. Egy fiktív munka beillesztése után a következő költségmátrixot kapjuk:

		10	15	10	15	0
		12	8	20	16	0
		12	9	12	18	0
		6	12	15	18	0
		16	12	8	12	0
Oszl.	Min.	6	8	8	12	0

Az oszlopminimumok kivonása után az alábbi mátrixot kapjuk.(mindegyik sorminimum 0)

4	7	2	3	0
6	0	12	4	0
6	1	4	6	0
0	4	7	6	0

Valamennyi 0-t lefedhetjük négy vonallal. (Pl. az 1., 2. és 5. oszlop és az 5. sor segítségével). A legkisebb le nem fedett költség 2, tehát

4	7	0	1	0
6	0	10	2	0
6	1	2	4	0
0	4	5	4	0
12	6	0	0	2

Adódik. Ebben a mátrixban 5 vonalra van szükség valamennyi 0 lefedéséhez, tehát optimális megoldáshoz jutottunk. Az 1. munkás végzi a 3. munkát, a 2. munkás a 2. munkát, a 4. munkás az 1. munkát, az 5. munkás a 4. munkát végzi, a 3. munkásnak pedig nem jut munka. Összesen 36 munkaórára van szükség.

3. A Vogel módszer a következő lbm-et adja:

	Jan.	Feb.	Márc.	Fiktív	Kapac.	Sor bünt.
	400	420	440	0		
Jan.					35	400
	425	420	440	0		
Feb.					30	420
	420	415	410	0		
Már.					35	410
Igény	30	30	20	20	•	

Oszlop bünt.	20	5	30	0		
	Jan.	Feb.	Márc.	Fiktív	Kapac.	Sor bünt.
	400	420	440	0		
Jan.					35	20
	425	420	440	0		
Feb.				20	10	5
	420	415	410	0		
Már.					35	5
Igény	30	30	20	X	•	

Oszlop bünt.	20	5	30	_		
	Jan.	Feb.	Márc.	Fiktív	Kapac.	Sor bünt.
	400	420	440	0		
Jan.					35	20
	425	420	440	0		
Feb.				20	10	5
	420	415	410	0		
Már.			20		15	5
Igény	30	30	X	X		

Oszlop bünt.		20	5	_	_		
		Jan.	Feb.	Márc.	Fiktív	Kapac.	Sor bünt.
		400	420	440	0		
Jan.	30					5	_
		425	420	440	0		
Feb.					20	10	-
		420	415	410	0		
Már.				20		15	_
Igény		Χ	30	Χ	X	•	

Oszlop bünt.		-	5	_	_			
		Jan.	Feb.	Márc.	Fiktív	Kapac.	Sor	bünt.
		400	420	440	0			
Jan.	30					5		_
		425	420	440	0			
Feb.					20	10		_
		420	415	410	0			
Már.			15	20		X		_
Igény		X	15	X	X			
Oszlop bünt.		_	0	_	_			
		Jan.	Feb.	Márc.	Fiktív	Kapac.	Sor	bünt.
		400	420	440	0			
Jan.	30					5		_
		425	420	440	0			
Feb.			10		20	X		_
		420	415	410	0			
Már.			15	20		X		_
Igény		Χ	5	X	X			
Oszlop bünt.		_	_	_	_			
		Jan.	Feb.	Márc.	Fiktív	Kapac.	Sor	bünt.
		400	420	440	0	X		_
Jan.	30		5					
		425	420	440	0	X		-
Feb.			10		20			
		420	415	410	0	X		_
Már.			15	20				
Igény		X	X	X	X			

Valamennyi $c_{ij} \le 0$, tehát optimális megoldáshoz jutottunk.

420, $v_3 = 415$, and $v_4 = 0$.

A duálváltozók értékei: u_1 = 0, u_2 = 0, u_3 = -5, v_1 = 400, v_2 =

3.c. A januári keresletet 30 egységnyi januári termeléssel

elégítjük ki. A februári keresletet 5 egységnyi januári termelésből, 10 egységnyi februári termelésből és 15 egységnyi márciusi termelésből elégítjük ki. A márciusi igény kielégítése 20 egységnyi márciusi termeléssel történik.

4.

•	Por	Konyha	Fürdő	Ált.	Fiktív	Sor min.
	•					_
1. takarítónő	6	5	2	1	0	0
2. takarítónő	9	8	7	3	0	0
3. takarítónő	8	5	9	4	0	0
4. takarítónő	7	7	8	3	0	0
5. takarítónő	5	5	6	4	0	0
Oszlop min.	5	5	2	1	0	_

Az oszlopminimumok kivonása után

		Por	Konyha	Fürdő	Ált.	Fiktív
		•				
1.	takarítónő	1	0	0	0	0
2.	takarítónő	4	3	5	2	0
3.	takarítónő	3	0	7	3	0
4.	takarítónő	2	2	6	2	0
5.	takarítónő	0	0	4	3	0

adódik. Az 1., 3. és 5. sorok az 5. oszloppal együtt lefedik valamennyi 0-t.

Vonjunk ki 2-t valamennyi le nem fedett költségből, és adjunk 2-t valamennyi kétszer lefedett költséghez:

		Por	Konyha	Fürdő	Ált.	Fiktív
		•				
1.	takarítónő	1	0	0	0	2
2.	takarítónő	2	1	3	0	0
3.	takarítónő	3	0	7	3	2
4.	takarítónő	0	0	4	0	0
5.	takarítónő	0	0	4	3	2

Most 5 vonalra van szükség valamennyi 0 lefedéséhez. Ezért optimális megoldáshoz jutottunk (a 3. takarítónőé a konyha, az 5. takarítónő porszívózik, a 4. takarírónő nem kap feladatot, a 2.-é az általános rendrakás, és az 1. takarítónőé a fürdőszoba). Az összes munkaidő 15 óra.

5. Jelölje x_{ij} az i-edik adattárolón tárolt j-edik típusú fileok száma. Ekkor a következő kiegyensúlyozott szállítási feladathoz jutunk:

	SZÖV.	PROG.	ADAT	FIKTÍV	
	40	16	8	0	
MEREV.					200
	16	4	2	0	
MEM.					100
	80	32	12	0	

Például a 40-es költség abból adódik, hogy ha egy szövegszerkesztő file-t tárolunk a merevlemezen, akkor ezt havonta 8-szor kell megkeresni, és mindegyik megkeeséshez 5 percre van szükség. Ezért havonta 8*5 = 40 percet fordítunk arra, hogy megkeressünk egy szövegszerkesztő file-t egy merevlemezen. Az optimális tábla a következő:

	SZÖV.		PROG.		ADAT		FIKTÍV		
		40		16		8		0	
MEREV.	200		0						200
		16		4		2		0	
MEM.	100								100
		80		32		12		0	
SZALAG			100		100		100		300
	30	0	10	0	10	0	100		•

Ezek szerint 200 szövegszerkesztő filet kell tárolni a merevlemezen, 100-at a számítógép memóriájában, 100 programcsomagot valamint 100 adatfile-t pedig szalagon.

6. Két fiktív "hívás" beiktatása után a következő költségmátrixot kapjuk:

	1.Hívás	1.Hívás	1.Hívás	Fiktív1	Fiktív2	Sor min.
Autó 1	10	11	18	0	0	0
Autó 2	6	7	7	0	0	0
Autó 3	7	8	5	0	0	0
Autó 4	5	6	4	0	0	0
Autó 5	9	4	7	0	0	0
Oszl.	5	4	4	0	0	•
Min.						

A sorminimumok mindegyike 0. Az oszlopminimumok kivonása után az alábbi költségmátrixhoz jutunk:

	1.Hívás	1.Hívás	1.Hívás	Fiktív1	Fiktív2
Autó 1	5	7	14	0	0
Autó 2	1	3	3	0	0
Autó 3	2	4	1	0	0
Autó 4	0	2	0	0	0
Autó 5	4	0	3	0	0

Négy vonallal (4. és 5. oszlop, 4. és 5. sor) lefedhetjük az összes 0-t. A legkisebb le nem fedett költség 1, tehát

	1.Hívás	1.Hívás	1.Hívás	Fiktív1	Fiktív2
Autó 1	4	6	13	0	0
Autó 2	0	2	2	0	0
Autó 3	1	3	0	0	0
Autó 4	0	2	0	1	1
Autó 5	4	0	3	1	1

Most már 5 vonalra van szükség valamennyi 0 lefedéséhez, tehát optimális megoldást kaptunk. Egy optimális párosítás a következő: az 5-ös autó megy a 2-es hívás helyszínére, a 4-es

autó az 1-es híváshoz, a 3-aas autó pedig a 3-as hívás helyszínére megy. A 2-es és 4-es autók nem mennek ki egyik hívásra sem. Az össztávolság értéke 14.

7.							
	W1	В1	W2	B2	WЗ	В3	Kapacitás
	0	М	3	М	5	М	210
W1							
	М	0	M	3	M	5	120
B1							
	3	M	0	M	4	М	210
W2							
	М	3	M	0	M	4	30
В2							
	5	M	4	M	0	M	180
WЗ		<u> </u>					
- 0	М	5	M	4	М	0	150
В3				L			
Igén	200	100	200	100	200	100	
У							

Egy egységnyi Wi-ből Wj-be történő szállítás azt jelenti, hogy az i-edik körzetből egy fehér tanuló a j-edik körzetbe jár. Egy egységnyi Bi-ből Bj-be történő szállítás azt jelenti, hogy az i-edik körzetből egy fekete tanuló a j-edik körzetbe jár. A M költségek biztosítják, hogy Wi-ből Bj-be illetve Bi-ből Wj-be ne legyen szállítás.

8. Az észak-nyugati módszerrel a következő lbm-t kapjuk:

	12	14	17	-1	
	12	14	16	0	
0	40	20			60
	14	13	19	0	
-1		50			50
	17	15	18	0	
1		0	10	30	40
	40	70	10	30	•

Mivel $c_{13}=1$, az $c_{13}=1$, az $c_{13}=1$, az változót bevesszük a bázisba. Az új táblázat a következő:

	12	14	16	-1	
	12	14	16	0	
0	40	10	10		60
	14	13	19	0	
-1		50			50
	17	15	18	0	
1		10		30	40
	40	70	10	30	-

Ez egy optimális tábla.

9. Ez a feladat az alábbi kiegyensúlyozott szállítási feladattal ekvivalens:

V	2	3

u		2			3	
0	3		1			4
		4			3	
0			5			5
	3			6		

Ez egy optimális tábla. Az eredeti LP optimális meogoldása: $x_1 = 3$, $x_2 = 1$, $x_3 = 0$, $x_4 = 5$.

10. Az észak-nyugati sarok módszer a következő (optimális) lbm-t adja

	V		4			2			-2		
u				4			2			4	
0		10			5						15
				12			8			4	
6					5			10			15
			10			10			10		

Az optimális megoldás célfüggvényértéke z = 10(4) + 5(2) + 5(8) + 10(4) = 130.

11. $s_1=16$ és $d_3=11$ esetén az észak-nyugati sarok módszerrel

	V		4			2			-2		
u				4			2			4	
0		10			6						16
				12			8			4	
6					4			11			15
			10			10			11		

adódik. Mivel az előző bázis lehetséges marad, ezért a bázis most is optimális. A célfüggvény új értéke: z = 10(4) + 6(2) + 4(8) + 11(4) = 128

Tehát most összesen 31 egységet szállítunk (30 helyett) 2\$-ral olcsóbban! Ennek az az oka, hogy s $_1$ 1-gyel történő növelése miatt egy egységet átirányíthatunk x $_{22}$ -től x $_{12}$ -höz (megtakarítva ezáltal 6\$-t), ugyanakkor +1 egységet szállítunk x $_{23}$ segítségével (4\$-nyi költséggel). Így a nettó megtakarítás 6-4=2\$. Felhasználva azt a tényt, hogy egy LP feladatban az árnyékárakat

 $-\mathbf{c}_{\text{BV}}$ B⁻¹ koordinátái adják, láthatjuk, hogy az s₁ korlátozó feltételhez tartozó árnyékár 0, a d₃ korláthoz tartozó árnyékár pedig 2. s₁ és d₃ módosítása után optimális maradt az eredeti bázis, ezért az új célfüggvényérték z = 130 - 1(0) - 1(2) = 128.

12. Az észak-nyugati sarok módszerrel a következő lbm adódik:

	20	11	3	6	
3		2			5
	5	9	10	2	
		1	9		10

			33		
18	7		4	1	
		3	12		15
3	.3	12		12	,

A minimális költség módszer az alábbi lbm-t adja:

	20		11			3			6	
				5						5
	5		9			10			2	
3		3		4						10
	18		7			4			1	
				3			12			15
	3	3			12			12		,

Vogel módszerével a következő lbm-t kapjuk:

	20			11			3			6	
					5						5
	5			9			10			2	
3								7			10
	18			7			4			1	
		3			7			5			15
	3	-	3			12			12		,

13.

	20		11			3			6	
				5						5
	5		9			10			2	
3							7			10
	18		7			4			1	
		3		7			5			15
	3	3	3		12			12		

14. Mindegyik kapacitás értéke 100,000 hordóban van kifejezve.

	DALL	HOUS	NY	CHIC	FIKTÍV	Kapacitás
LA	1000	1010	M	M	0	4
SD	1120	1000	M	M	0	5
DALL	0	M	450	550	0	9
HOUS	М	0	470	530	0	9
Taánu	0	٥	2	1	2	

15. x_{24} nembázis változó az optimális megoldásban.

Ha c_{24} értékét $(7 + \Delta)$ -ra módosítjuk, akkor $c_{24} = 3 + 2 - (7 + \Delta)$ = $-2 - \Delta$. Az aktuális bázis optimális marad, ha $\Delta \ge -2$ vagy $c_{24} \ge 5$.

16. x_{23} bázisváltozó az optimális megoldásban. Ha c_{23} értékét (13 + Δ)-ra módosítjuk, az új u_i ' és v_j ' duálváltozók értéke: u_1 = 0, u_2 = 3 +, u_3 = 3, v_1 = 6 - Δ , v_2 = 6, v_3 = 10, v_4 = 2. Eszerint

$$\overline{c}_{11} = -2 - \Delta$$
, $\overline{c}_{14} = -7$, $\overline{c}_{22} = \Delta - 3$, $\overline{c}_{24} = \Delta - 2$, $\overline{c}_{31} = -\Delta - 5$, $\overline{c}_{33} = -3$.

Tehát optimális marad az aktuális bázis, ha $-2 \le \Delta \le 2$ vagy $11 \le c_{23} \le 15$.

17a.

	ME	EMP	M	MIII		NY		DEN		SF	
		371		761		841		1398		2496	
ATL	5										5
		1296		1050		206		1949		3095	
BOS	1				4		1				6
		530		87		802		996		2142	
CHIC			4								4
		1817		2012		2786		1059		379	
LA							1		2		3
		6		4		4		2		2	

z = 8089

17b. A döntési változók értékei nem változnak.

18. A megfelelő tábla a következő:

	1. igény	2.igény	3.igény	Fiktív	
1. termelés	200	300	400	0	
					240
2.termelés	240	180	280	0	
					240
3.termelés	360	300	240	0	
					240
	200	300	100	120	

19. Az alábbi táblázattal oldható meg a feladat (maximalizálunk):

	1.munka	2.munka	3.munka	4.munka	Kapacitás
1. típusú	1	1	-M	-M	
személy					20
2. típusú	-M	1	1	-M	
személy					30
3.típusú	-M	-M	1	1	

			35		
személy					40
4.típusú	1	-M	-M	1	
Személy					20
	0	0	0	0	
Hiány Igény					10
Igény	30	30	40	20	_

1" egységnyi jutalmat adunk, ha egy személy olyan munkát kap, amit el tud végezni, ugyanakkor (-M)-mel díjazzuk azt, ha egy személy olyan munkát kap, amit nem tud elvégezni. Az "1"-et tartalmazó cellák száma lesz azon személyek száma, akik elfogadható munkát kaptak.

20. Az alábbi táblában kell maximalizálni:

	1. havi igény	2. havi igény	
1. havi	20-12	16-12-1	50
termelés			
2. havi	-M	16-15	50
termelés			
	0	0	20
Fiktív			
	60	60	•

- 21. Egy adott nap (j-edik nap) igényét kétféleképpen elégíthetjük ki
- 1. Újonnan vásárolt asztalkendővel, melyet most használunk először
- 2. Olyan asztalkendővel, amit már használtunk a k-adik napon, és kellő időben megérkezik a tisztítóból ahhoz, hogy a j-edik napon is használhassuk.

Tehát a következő kínálati pontokkal dolgozunk: Új = újonnan vásárolt asztalkendők, melyeket most használunk először (legfeljebb 15 + 12 + 18 + 6 = 51). Az új pont kapacitása 51.

- 1.nap = az első napon használt asztalkendők, melyeket később is használhatunk (ennek a pontnak a kapacitása 15)
- 2. nap = a 2. napon használt asztalkendők, melyeket később is használhatunk (ennek a pontnak a kapacitása 12)
- 3. nap = a 2. napon használt asztalkendők, melyeket később is használhatunk (ennek a pontnak a kapacitása 18).

Az alábbi kiegyensúlyozott szállítási feladathoz jutunk (az optimális megoldást is megadjuk).

	1.nap	2.nap	3.nap	4.nap	Fiktív	
	20	20	20	20	0	
Új	15	3			33	51
	M	10	6	6	0	
1. nap		9	6			15
	M	M	10	6	0	
2. nap			12			12
	M	M	M	10	0	
3. nap				6	12	18
	15	12	18	6	45	=

Tehát az 1.napi igényt 15 újonnan vásárolt asztalkendővel elégítjük ki. A 2.napon 3 új asztalkendőt és 9 olyat

használunk, melyeket az 1. napon használtunk, és a gyorstisztítóval tisztíttattunk. A 3 napon használt asztalkendők közül 6-ot használtunk az 1. napon, és ezeket a lassú tisztítóval tisztíttattuk, továbbá 12-t használtunk a 2. napon, és ezeket a gyorstisztítóval tisztíttattuk. A 4. napon 6 olyan asztalkendőt használunk, melyeket használtunk már a 3. napon, és ezeket a gyorstisztítóval tisztíttattuk.

22. Legyen $x_{ij}=1$, ha a személyzet egy tagja az i-edik járaton megy NY-ból Chic-ba, és a j-edik járaton repül Chic-ból NY-ba, legyen továbbá $x_{ij}=0$ egyébként. A c_{ij} "költség" az adott járat-kombinációhoz tartózkodó állásidő. Ekkor a következő költségmátrix adódik:

	1	2	3	4	5	6	7
1	M	М	3	6	8	10	11
2	M	M	2	5	7	9	10
3	M	М	М	3	5	7	8
4	2*	М	М	1	3	5	6
5	4*	1*	М	M	1	3	4
6	6*	3*	М	M	М	1	2
7	8*	5*	2*	M	М	M	M

M olyan járatkombinációt jelöl, amelyik nem valósulhat meg. *-gal jelöljük a Chicago-ban lakó személyzettel működő reggel 6-10-ig Chicago-ból NY-ba repül, majd 4 óra állásidő után délután 2-4-ig NY-ból Chicago-ba. Ennek a hozzárendelési feladatnak az optimális megoldása 2 Chicago-ban lakó személyzettel dolgozik, az össz-állásidő minimális értéke 25 óra. Az egyik személyzet az 1-es járattal repül Chicago-ból NY-ba és a 4-es járattal NY-ból Chicago-ba. A másik személyzet az 2-es járattal repül Chicago-ból NY-ba és a 7-es járattal NY-ból Chicago-ba. 5 New York-ban lakó személyzet az alábbi kombinációk szerint repül:

NY-Chicago 1-es Járat és Chicago-NY 3-as Járat NY-Chicago 2-es Járat és Chicago-NY 4-es Járat NY-Chicago 3-as Járat és Chicago-NY 5-ös Járat NY-Chicago 5-ös Járat és Chicago-NY 6-os Járat NY-Chicago 6-os Járat és Chicago-NY 7-es Járat

23.

	C1	C2	С3	E3	E4	
	65	63	62	62	64	
1. telep						3
	68	67	65	65	62	
2. telep						5
	63	60	59	59	60	
3. telep						5
	-M	-M	-M	0	0	
Fiktív						3
	4	3	3	3	3	

Az igényeket ezer egységben fejeztük ki. Az össz-termelési kapacitás 13,000, az elkötelezett igények összege 10,000, ezért legfeljebb 13,000-10,000=3,000 megmaradt egységet lehet

szállítani a 3. és 4. vevőhöz. (Maximumfeladattal van dolgunk!)

C1 = az 1. vevőhöz kötelezően szállítandó mennyiség

C2 = a 2. vevőhöz kötelezően szállítandó mennyiség

C3 = a 3. vevőhöz kötelezően szállítandó mennyiség

E3 = a 3. vevőhöz szállítható megmaradt termék mennyisége (legfeljebb 3000)

E4 = a 3. vevőhöz szállítható megmaradt termék mennyisége (legfeljebb 3000)

A feladat kiegyensúlyozása céljából beiktatunk egy fiktív pontot. A fiktív pontból nem szállíthatunk C1-be, C2-be és C3-ba, mert ez azt jelentené, hogy a cég valamelyik kötelezettségének nem tesz eleget (a táblázatban ezt a -M költségek biztosítják).

24.

	M1P	M1S	M2P	M2S	M3P	M3S	
	2	2	1	1	0	0	
1. hó							35
	-M	-M	2	2	1	1	
2. hó							35
	-M	-M	-M	-M	3	3	
3. hó							35
	-M	0	-M	0	-M	0	
FIKTÍV							5
	20	15	15	20	25	15	-

Maximumfeladatot írtunk fel, ezért a -M költségek biztosítják, hogy az igények időben legyenek kielégítve.

Vegyük észre, hogy a fiktív pontból elsődleges igények kielégítése nincs engedélyezve.

M1P = 1. havi elsődleges igény

M1S = 1. havi másodlagos igény, stb.

M1 = 1. havi termelés, stb.

Egy "szállítás" nettó nyeresége= egységnyi eladási ár - egységnyi termelési költség - egységnyi raktározási költség

25. Alakítsuk át a feladatot minimumfeladattá. Iktassunk be egy fiktív festményt. Az 1. vevő két képet is megvehet, ezért neki két kínálati pontja van, 1 és 1'.

	K1	K2	K3	K4	Fiktív	Sor min.
V1	-8	-11	0	0	0	-11
V1'	-8	-11	0	0	0	-11
V2	-9	-13	-12	-7	0	-13
V3	-9	0	-11	0	0	-11
V4	0	0	-12	-9	0	-12

A sorminimumok kivonása után

	K1	K2	K3	K4	Fiktív
V1	3	0	11	11	11
V1'	3	0	11	11	11
V2	4	0	1	6	13
V3	2	11	0	11	11
V4	12	12	0	3	12
Oszl. Min.	2	0	0	3	11

adódik. Az oszlopminimumok kivonása után

	K1	K2	K3	K4	Fiktív
V1	1	0	11	8	0
V1'	1	0	11	8	0
V2	2	0	1	3	2
V3	0	11	0	8	0
V4	10	12	0	0	1

adódik. A 4. és 5. sorok valamint a2. és 5. oszlopok lefedik valamennyi 0-t.

Vonjunk ki 1-et minden le nem fedett költségből, és adjunk 1-es minden kétszer lefedett költséghez

	K1	K2	К3	K4	Fiktív
V1	0	0	10	7	0
V1'	0	0	10	7	0
V2	1	0	0	2	2
V3	0	12	0	8	1
V4	10	13	0	0	2

A következő optimális hozzárendelést kapjuk: $x_{44}=1$, $x_{33}=1$, $x_{22}=1$, $x_{1'1}=1$, and $x_{15}=1$. Tehát az 1-es vevő veszi meg az 1-es festményt, a 2-es vevő a 2-es festményt, a 3-as vevő a 3-ast, és a 4-es vevő pedig a 4-est. Az összbevétel értéke 8+13+11+9=41\$.

26. Feltételezzük, hogy a költségek mindig év elején jelentkeznek. 11 1/9% diszkont-rátával számolva egy minden év elején (örökké) jelentkező 1\$ költség jelenértéke 10\$ (ma). Megoldunk egy szállítási feladatot, melyben három gyár szerepel, ezek: NY, CHIC, és LA. A költségeket a 0 időpontra diszkontálva:

Teljes szállítási és termelési költség = 14,537,000\$
A gyárak teljes működtetési költsége = 1,500,000\$
Összköltség = 16,037,000\$

Az Atlantai gyárra vonatkozó költségek a következők:

Teljes szállítási és termelési költség = \$9,789,500 A gyár teljes működtetési költség = \$2,000,000 Építési költség = \$3,000,000 Összköltség = \$14,789,500

A Houstoni gyárra vonatkozó költségek

Teljes szállítási és termelési költség = \$9,924,000 A gyár teljes működtetési költség = \$2,000,000 Építési költség = \$3,000,000 Összköltség = \$14,924,000

Egy Houstoni és egy Atlantai gyár esetén,

Teljes szállítási és termelési költség = \$7,450,000 A gyárak teljes működtetési költsége = \$2,500,000 Építési költség Összköltség = \$6,000,000 = \$15,950,000

Ezek szerint a minimális költséget úgy érjük el, hogy Atlantában építünk egy új gyárat, Hopustonban viszont nem.

27. Használjuk a feladat leírásában bevezetett xij változókat. A következő hozzárendelési feladatot kapjuk:

	1	2	3	4
1	500	400	350	325
2	400	500	400	350
3	400	400	500	400
4	350	350	400	500

Ennek a feladatnak az optimális megoldása: x13 = x24 = x31 = x42 = 1. Tehát három jegyet vásárolhatunk 30% kedvezménnyel, és egy jegyet 20% kedvezménnyel. Az összköltség értéke 1450%.

28. (-1)-gyel való szorzással minimumfeladatot kapunk

	De 9	De 10	De 11	Du 1	Du 2	Du 3	Sor min.
P1	-8	-7	-6	- 5	-7	-6	-8
P1'	-8	-7	-6	- 5	-7	-6	-8
P2	-9	-9	-8	-8	-4	-4	-9
P2 ′	-9	-9	-8	-8	-4	-4	-9
Р3	-7	-6	-9	-6	-9	-9	-9
P3'	-7	-6	-9	-6	-9	-9	-9

A sorminimumok kivonása után

	De 9	De 10	De 11	Du 1	Du 2	Du 3
P1	0	1	2	3	1	2
P1'	0	1	2	3	1	2
P2	0	0	1	1	5	5
P2'	0	0	1	1	5	5
P3	2	3	0	3	0	0
P3'	2	3	0	3	0	0
Oszl. min.	0	0	0	1	0	0

adódik.

Vonjuk ki az oszlopminimumokat.

	De 9	De 10	De 11	Du 1	Du 2	Du 3
P1	0	1	2	2	1	2
P1'	0	1	2	2	1	2
P2	0	0	1	0	5	5
P2'	0	0	1	0	5	5
Р3	2	3	0	2	0	0
P3'	2	3	0	2	0	0

Az 1., 2. és 4. oszlop valdeint az 5. és 6. sor lefedi aldeennyi 0-t. Növeljük 1-gyel akétszer lefedett költségeket, és vonjunk ki 1-et a le nem fedett költségekből.

	De 9	De 10	De 11	Du 1	Du 2	Du 3
P1	0	1	1	2	0	1
P1'	0	1	1	2	0	1
P2	0	0	0	0	4	4
P2'	0	0	0	0	4	4
Р3	3	4	0	3	0	0
P3'	3	4	0	3	0	0

Most hat vonal szükséges valamennyi 0 lefedéséhez. Az optimális megoldás: $x_{66} = 1$, $x_{15} = 1$, $x_{21} = 1$, $x_{32} = 1$, $x_{44} = 1$, $x_{53} = 1$. Tehát az 1. Professzor de. 9-kor és du 2-kor tart órát, a 2. Professzor de. 10-kor és du. 1-kor, a 3. Professzor pedig de. 11-kor és du 3-kor.

29. Az ij kínálati pont az i-edik tűzoltótársaság j-edik autóját jelöli. Az ij keresleti pont azt jelöli, hogy a j-edik autó vonul ki az i-edik tűzhöz. Mindegyik kapacitás illetve igény értéke 1.

	11	12	21	22	31	32	33
11	36	24	49	21	81	72	45
12	36	24	49	21	81	72	45
13	36	24	49	21	81	72	45
21	30	20	56	24	99	88	55
22	30	20	56	24	99	88	55
31	36	24	63	27	90	80	50
32	36	24	63	27	90	80	50

Ez a táblázat a a költségek valódi értékét tartalmazza, hiszen egy adott tűz esetén a korábbi kivonulás nagyobb költséggel jár, mint egy későbbi. Például az optimális megoldásban nem fordulhat elő, hogy egy autó, amelyik 6 perc alatt ér a helyszínre, korábban érkezzen az adott tűzhöz, mint az a másik, amelyik 4 perc alatt ért volna ugyanoda. (Ha ugyanis felcserélnénk a két hozzárendelést, akkor csökkenne a költség, és ugyanazok az autók lennének bevethetők a többi esetnél.) A (b) esetben előfordulhatna, hogy egy hozzárendelésnél t12<t11, ekkor azonban inkorrekt költségek adódhatnának.